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I. INTRODUCTION

In the fields of biology, chemistry, and physics there are

numerous examples of experimental situations which yield data that

may be reasonably described by the following set of regression

equations:

m -_kXj

Yij = _io + E e +k=l c_ik ¢ij
(1.1)

for i = 1,2,...,n and j = 1,2,...,N. In this expression Yij and

th

Eij represent random variables associated with the j observation

on the ith equation; xj represents an independent variable, e.g.,

time; and the Uik'S and %k'S are constant parameters that are

inherent in the physical or experimental situation. One of the

prime examples of suchan experimental situation which will be

referred to a great number of times during this research involves

the use of radioactive tracers in order to study certain biological

processes_

For single equation regression models, there have been many

estimation procedures developed and in Chapter 2 we will discuss

some of the single equation nonlinear estimation procedures that

are pertinent to this research as well as other related literature.

In Chapter 3 we will present a discussion of the various types of

regression models.to be used in this research and we will show how
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the regression equations used to describe a mammillary or catenary

compartment model are members of the class of regression models

given by (i.!). Also in this chapter some of the distributional

assumptions concerning the random variables will be stated. In

Chapter 4a generalized least squares estimation procedure will

be presented and evaluated. This generalized procedure may be

applied not only to the class of regression models given by (i.i),

but, under certain regularity conditions to be given then, also to

the more general class of regression models described by:

Yij = fi(Xj ;8) + Eij (1.2)

where Yij and cij are the same as defined in (i.i); fi represents

th

the regression function for the i equation; Xj represents a

vector of independent variables; and e represents a vector of

constant parameters to be estimated. In Chapter 5 a generalization

of the partial total estimation procedure as discussed by Corncll

[1962] will be presented and evaluated_ "_ This estimation procedure

will be applied to the class of regression functions in (I.i)

when n = m. In Chapter 6 a generalization of the Spearman

estimation procedure as discussed by Johnson and Brown [1961] will

be presented and evaluated for a particular class of regression

functions in (I.i) when n = m.

From an investigation of equation (I.i) we note that the

set of exponential parameters Al,A2,...,Am is present in each one

of the regression equations. These exponential parameters are
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usually of primary interest in experimental situations and therefore

our main concern has been with the estimation of the parameters that

are commonto someof the regression equations, even though our

general concern has been with the estimation of all of the constant

parameters in our regression model. Wealso have dealt exclusively

with estimation schemesthat makeuse simultaneously of all of the

observations available on all of the equations being studied. In

Chapters 4, 5, and 6 the range of the subscript j of equations (i.i)

and (1.2) will change as we go from one estimation schemeto another,

since the requirements on the total number of observations and the

spacing of the observations change from one procedure to another.

However, we will attempt to makethese changes clear as the

different procedures are presented.

In Chapter 7 numerical examples of the various estimation

procedures will be given and a comparison of the various procedures

will be given. This chapter will also contain suggestions that

will help the experimenter design his experiment in order to make

the best use of these estimation procedures.



II. REVIEWOF LITERATURE

2.1 Introduction

In this chapter we want to review papers that are concerned

with presently used nonlinear estimation procedures before our

generalized estimation schemesare presented. In Section 2.2 our

discussion will be devoted to those papers that consider the problem

of nonlinear estimation for a single nonlinear regression equation.

Also included will be a discussion of least squares nonlinear

estimation as well as other nonlinear estimation procedures. In

Section 2.3 papers that have considered the problem of simultaneous

estimation of parameters in a set of regression functions will be

discussed. Then since someof the generalized estimation procedures

presented in this research are restricted to particular regression

models, Section 2.4 will discuss how the models as given by

equation (i.i) arise in tracer experiments. The papers referred

to in this chapter are meant in no way to be a complete review of

the literature concerned with nonlinear estimation; however, they

have been selected because of their pertinence to this research.

2.2 Single equation estimation procedures

In this section weiwill be interested only in the case when

n = i from equation (1.2), and therefore we will suppress the

4
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subscript i.

Oneof the more heavily used nonlinear estimation procedures

is the iterative least squares technique which maybe attributed to

the work of Gauss (see translation of Gauss' work by Trotter [1957]),

who was amongthe first to use the Newton or Newton-Raphsonmethod

for the specific purpose of estimating the parameters in nonlinear

regression equations by the least squares method. The basic aim of

the least squares estimation techniques is the minimization of

N
_(e) = E [y_ - f(Xj;8)] 2 (2.1)

j=l J

where yj, f, Xj, and e have been defined in equation (1.2). The

usual Gaussian procedure involves the approximation of the original

nonlinear function, f, by a linear model by meansof a Taylor series

expansion of f through the linear terms about a point of initial

estimates of the vector of parameters, 8. The details of this

estimation procedure will be presented in Chapter 4 since this

procedure is incorporated into the simultaneous nonlinear least

Squares estimation method developed there.

One of the problems that occasionally arises with the

application of the Gaussian iterative technique of estimation is

the problem of convergence, and someauthors have presented

modifications to the Gaussian technique in order to circumvent this

problem. Hartley [1961] presents someassumptions for and

modifications to the Gauss-Newtonestimation method and his

modified Gauss-Newtonmethod has the merit of guaranteed convergence



under the assumptions to be given in Chapter 4 where the detailed

steps of the modified procedure will also be given. Levenberg [1944.]

extends the standard Gaussian iterative technique so that an
^

improvement of the initial estimate, o8' of the vector of parameters
^ ^

8 could be ensured, i.e. improved in the sense that _(i e) < _(o e)

where i8 is the new estimate of the vector 8 derived from the initial
A

estimate e. Levenberg proposes that the following augmented sum
o

of squares be minimized over the range of the elements of 8:

_* = w_* + aI o I + a2 o p o p
(2.2)

where

NE _ 061 f(1) ... f(p))2- f° - _
(Yj o 3 o j o p o j

j=l
^

o_b (8b oSb); o f] = f(X];oS) ; and of_ b) _f(XJ;°0)
= - - 98b

for

(2.3)

,-. . areb = 1,2,...,p and j = 1,2 .,N. The elements al,a 2, ..,ap

positive constants expressing the relative importance of the

^

different increments, odb , and w is a positive constant expressing

the relative importance of the approximating sum of squares _*.

Let e(w) denote that point in the parameter space at which $*

achieves its minimum, then Levenberg determines the constants

w,al,...,a p by the following procedure:

(I) The best theoretical value of w would be determined by solving

d_(O(w)) = 0; (2.4)
dw
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however, this equation is usually difficult to solve so an

approximate method will be used. The approximation involves

setting the following expression equal to zero:

_(8(w)) = _(o U) + w . (2.5)
\ dw /w=o

• are chosen so that the directional
(2) The constants al,a2, ..,ap

derivative of _, taken at w = 0 along the curve 8 = 8(w), should

have its minimum value, namely, the negative gradient. Levenberg

shows that this criterion is satisfied when al,a2,...,a p are all

equal.

Levenberg also demonstrates the following for his procedure:

(i) The minimization of (2.2) also diminishes the sum of squares

of the approximating residuals 4*-

(2) The increments given by the standard least squares solution

are improved.

(3) Values of w can be found for which the sums of squares of the

true residuals 4(8) can be reduced.

(4) The usual least squares solutions for % correspond to the

case where w_ = and hence is a special case of this procedure.

Another iterative procedure that can be used to determine

those values of @ that minimize the expression _(8) is the gradient

method or the method of steepest descent. This method is similar

to the Gauss-Newton method in that one has a preliminary estimate

^

of 8, denoted by 0 8, and attempts to find a new estimate for 8,
^ ^ ^

say 18, which is better than o8 in the sense that _(i _) < _(o8).
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The gradient or steepest descent method merely steps off from the

current preliminary trial value in the direction of the negative

gradient of _(e). One limitation with the various gradient methods

is the one of slow convergence. In order to circumvent someof

the problems inherent in the gradient and Gaussian estimation

techniques, Marquardt [1963] develops "a maximumneighborhood

method [that], in effect, performs an optimum interpolation between

the Taylor series [Gauss-Newton] method and the gradient method,

the interpolation being based upon the maximumneighborhood in

which the truncated Taylor series gives an adequate representation

of the nonlinear model." Marquardt's method involves solving the
^

following equation for 6:
O

^

(oFT F + _I)o6 = FTo o oy (2.6)

where F = { ;(b)_. ; j = 1,2,..._N, b = ],2,...,p} is an N × p
o o 3

^

matrix where °f_b) - _eb_f(X°;°8)3;

^ ^

6 = ( 6b,b = 1,2,...,p) is ao o

p × I vector where o6b = Ob - oSb ; oy = (yj - f(Xj;o0),

j = 1,2,...,N) is an N × i vector; and _ _ 0. Yhe superscript T

on a matrix or vector represents the transpose of the corresponding

matrix or vector. An outline of Marquardt's estimation procedure

is given as follows:

Let B = FT F and define the new matrix B* by
O O O O
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B* = { b* ,r,r" = 1,2"'',P}=_°brr"

o o rr" _ obrr obr.r.

r,r = 1,2,...,p

Let oG = oFTo y and define oG* = (og_,...,og _) =

°gP . At the

\4bll / bo pp

^

equation for m6*:

^

( B* + _I) 8" = mG*"

iteration solve the following

(2.7)

^ ^

Then 6 is obtained by 6 =

^ ^

6* T

\ /b
i m pp

^ ^

= 8 + 6 and the
A new trial vector is found by taking m+l e _

A

procedure is continued until 6 becomes sufficiently small. The

aim of the procedure is to minimize _ in the "neighborhood over

which the linearized function gives an adequate representation of

the nonlinear function." For large values of _ Marquardt

^

demonstrates that the solution 6 in equation (2.6) rotates toward
O

the solution for this increment found by the gradient method. For

= 0 we can show that we obtain the usual Gaussian estimate for the

vector of increments. Also it can be shown that equation (2.6) is

the same as d__*^= 0 from Levenberg's procedure for the special case

d6
o
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when aI = a2 = ... = a = a from equation (2.2). For this caseP

in equation (2.6) is equal to _ where w has been defined earlier.
W

Therefore during the iterative procedure small values of _ are

chosen when conditions are such that the Gauss-Newton method will

converge nicely, which is usually true in the later steps of

iteration.

The estimation of the parameters in a nonlinear regression

equation is usually initiated by reducing the nonlinear function to

a type of linear function. In the iterative procedures discussed

in _h_ pf_i_Us _a_agraphs, this was acccmplished by a Taylor series

expansion of the nonlinear function about some preliminary estimate

of the vector of parameters. Since many physical laws which are

represented by nonlinear functions are derivedfrom simple, mainly

linear, relationships between the function and its first and second

derivatives, Hartley [1948], Lipton and McGilchrist [1964], and

Wiggins [1960] have attempted to replace the original nonlinear

regression equations by equivalent linear finite difference

equations. Then they perform a least squares estimation procedure

on the set of linear equations.

As an example consider the regression function:

-82x

E(y) = 81 - e (2.8)

which is generated by the first order differential equation

dE(y)

dx = 02(01 - E(y)). (2.9)
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This differential equation is equivalent to the following difference

equation

-02h
E(yj+l) - E(yj) = (eI - E(yj))(l - e ) (2.10)

-e2x j

where E(yj) = eI - e and xj+ 1 - xj = h for all j. In a more

general form the equation may be written as:

(2.11)
E(yj+l) - E(yj) = aE(yj) + b.

This is the type of difference equation considered by Hartley.

From a knowledge of summation of finite differences, equation _(2.11)

takes the form

j-i

E(yj) - E(y o) = aj.=oE E(yj.) + bx.j + c (2.12)

where c is a constant of summation. Hartley's "internal least

4: I--..

squares approach" may formally be described as _ol_uws:

(i) The honlinear regression equation, which is the solution of a

linear differential equation, is replaced by an equivalent linear

finite difference equation.

(2) The observations yj are expressed as a linear function of the

j-i

progressive sums E E(yj.) and the independent variable xj,
j "=O

by forming the progressive sums on the equivalent finite difference

equation and replacing E(yj) by yj.

(3) Finally, a least squares fit is made on this last linear
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equation, from which estimates of the original parameters are

found.

Lipton and McGilchrist [1964] present a general method of

estimation for the parameters in the multiple exponential

regression function from an equivalent finite difference equation.

For the multiple exponential curve

k
E(yj) = _ + E Bip__, j = 0,1,...,N-I,

i=l

they

(I)

capable of generating (2.13):

(2.13)

Show that the following general finite difference equation is

Gm+k_IE(yj+ k) + Gm+k_2E(yj+k_l) +...+ GoE(yj_urbl)

+_G=0 (2.14)

where m _ k and the G's are specified functions of the parameters.

(2) Substitute the observations Yj+k for E(yj+ k) in (2.14).

(3) Suggest estimating the parameters by minimizing either of the

following expressions:

N-k-i

E

j=-k
_Gm+k_lYj+ k + Gm+k_2Yj+k_ I +...+ GoYj_m+ I + aG) 2 (2.15)

or

N-k-I

E

d=-k
E Gm+k_lYj+ k + Gm+k_2Yj+k_ I +...+ GoYj_m+ I

"j=-k

(2.16)
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They also indicate that several other nonlinear models maybe

represented in the form (2.14).

Wiggins [1960] also presents an estimation procedure that

is based upon someof the concepts of finite differences. Moreover,

his procedure is also presented for simultaneous estimation for more

than one nonlinear equation. This procedure maybe briefly

described as follows:

(I) Let yj, j = 1,2,...,N, be a set of N observations.

(2) Let E(yj) be a function of the independent variable E j,

where xj+ I - x._ = h for all j.

dE(y)

(3) Assume that dx is expressable as a linear function of

dE(y)

E(y) and the parameters to be estimated. Then replace dx by

Yj+I-Yj-I

xj+l-xj -I = uj and E(yj) by yj.

(4) Fit the linear equation which expresses u. as a linear

function of yj and the parameters by least squares.

Again this procedure is applicable to any physical situation that

may be described by means of a system of linear differential

equations with constant coefficients.

Besides the above papers that have been concerned with

the development of least squares or pseudo least squares

estimation procedures, there have been some related papers that

considered aspects of least squares estimation other than the
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estimation problem. Oneof these problems is concerned with

measuring the amount of departure from linearity by a nonlinear

regression model. This is a pertinent consideration since manyof

the least squares techniques approximate a nonlinear function by a

truncated linear Taylor series expansion of the nonlinear function.

Beale [1960] has proposed a measure of nonlinearity given by:

^2 m N [ ^ P _f(Xj;8) ]2
Z Z [f(Xj;18)-f(Xj;8)-bEl(leb-e b)po

i =l j =i = S8b

E f(X4; ;8)
I=1 i

(2.17)

where o is the estimate of o2 = E(e ), J = 1,2,...,N;

^

E(yj) = f(Xj;8); 8 is the least squares estimate of 8; and
^

18, _ = 1,2,...,m, represent points in the neighborhood of 8.

Beale concludes that the model is "disastrously nonlinear in 8"

^ liFe(p,if N 8 > u) while the linear approximation to the nonlinear
^

model is satisfactory if N O < 0.Ol/Fa(P,U) where Fe(p,v) is the

upper 100e% point of the F distribution with (p,u) degrees of

freedom and 9 is the degrees of freedom associated with the

^2
estimate of o 2. Although Beale only speaks of o as being an

"adequate independent estimate" of o 2 both Beale and Guttman and

Meeter [1965], who examine the validity and usefulness of this

measure of nonlinearity by means of numerical examples, propose

and use the following estimate of o2 ^2 N: o = E (y -f(X.;8))2/(N-P)

j=l j J
^

where 8 is the least squares estimate of 8.



15

Other estimation procedures that are concerned with the

specific problem of estimating the parameters in the class of

regression models given by (i.i) are the partial totals technique

discussed by Cornell [1962] and the Spearmanestimation procedure

as presented by Johnson and Brown [1961]. Both of these procedures

have limited their consideration to special membersof the class

of models given by (1.1). More specifically the partial totals

procedure has been limited to the case when n = i and the Spearman

estimation procedure has been limited to the case n = m = i in

equation (i.I). For the special case n = m = i in (i.i) there

have been manyestimation procedures presented for the estimation

of the exponential parameter and Speckmanand Cornell [1965]

outline for this case someof the more familiar estimation

techniques, i.e. maximumlikelihood, least squares, weighted

least squares, and partial totals. After evaluating the above

procedures these authors conclude that the maximumlikelihood

and partial totalsmethods give similar results for small values of

N. Since the main contribution of this research has been the

generalization of the partial totals and Spearmanestimation

procedures to the simultaneous consideration of several equations,

we will wait until Chapters 5 and 6 before giving the details of

these estimation techniques. The results of Speckmanand Cornell

[1965], the simplicity of these two estimation schemesfor the

simple exponential model, and the high efficiency (88%) of the

Spearmanestimation procedure for the simple exponential model
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with binomial variation have provided a great deal of the

motivation for this research.

2.3 Simultaneous estimation schemes

Although there have been somepapers written on the

problem of =stimating the parameters in a set of regression

functions simultaneously, the papers have not considered the

particular situation covered by this research. Telser [1964] and

Zellner [1962] have presented simultaneous estimation schemesthat

maybe used when one is faced with a set of linear regression

equations each being a function of a different set of parameters.

Muchof the estimation development in these papers is based on

Aitken's [1934] generalized least squares for linear equations.

With respect to the problem of simultaneous estimation of the

parameters in a set of nonlinear regression equations, there has

been very little written. Box and Draper [1965] have considered

the Bayesian estimation of commonparameters from several responses

when the observed randomvariables of our regression model are

assumedto follow a multivariate normal distribution. In addition,

Turner, et. al. [1963] have considered this problem when the

covariance matrix for the error terms is assumedto be known to

within a constant multiplier. Turner's approach is based upon a

Taylor series expansion of each regression equation through the

linear terms about somepreliminary estimates of the parameters,

and then an approach similar to that used by Telser [1964] or

Zellner [1962] is applied iteratively. Beauchampand Cornell [1966]
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use a similar procedure for a system of nonlinear regression

equations in which someof the parameters may be commonto more

than one of the regression equations; however, fewer assumptions

are madeabout the covariance matrix of the error terms. The

details of this simultaneous nonlinear estimation procedure are

included in Chapter 4.

2.4 Models

This research was initially motivated by investigations

reported in an article by Galambosand Cornell [1962] involving the

use of radioactive tracers in a biological experiment. Therefore

throughout this research we have attempted to formulate and

generalize our simultaneous estimation procedures with the ultimate

purpose in mind of applying them to the estimation of the parameters

used to describe tracer experiments. Sheppard [1962] has presented

one of the more complete discussions on the basic concepts of the

use of tracers beginning with a discussion of the elementary

principles of the tracer method. Sheppard then moves into a

discussion of tracer experiments in compartmental systems and the

problem of model building. Properties of these models will be

derived in Chapter 3 which will be useful in the development of

estimation procedures in later chapters. Sheppard also includes

an extensive bibliography in his book on tracer experiments.

Bermanand Schoenfeld [1956] also give a good discussion of the

formulation of models for tracer experiments in steady state, and

consider the problem of estimating the constants that are inherent
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in the physical or biological experiment. Cornfield, et. al. [1960]

are also concerned with the problem of model building and estimation

as related to tracer experiments; however, they only consider one

equation at a time in their estimation process. Berman[1961]

gives a good example of the application of tracer experimentation

and model building to the thyroid system. A general discussion of

compartmental models will be given in this paper in Chapter 3.



III_ MODELSTOBE CONSIDERED

3.1 General discussion of compartmental models

In the introduction to this research the statement was made

that there exist exampleswhere a regression model such as that

given by equation (i.i) is used to describe a physical situation.

Twosuch examples that arise in experiments concerned with the use

of radioactive substances as tracer material are the mammillary

and catenary systems. Although a great deal of writing has been

done concerning the mathematical formulation of models for tracer

experimeuts, two of the better discussions on this subject are

those by Bermanand Schoenfeld [1956] and Sheppard [1962]. The

basic rule of these formulations is to consider a system within

an organism as madeup of a number of chemical states or sites of

a physiological substance. It is assumedthat there are fixed

transition probabilities or turnover rates from one state or site

to another and the whole system is assumedto be in steady state.

Henceby introducing radioactive substances into the system we

are able to study the system "in vivo" without affecting the

turnover rates of the system, The system as a whole is quite

complicated but an adequate model for studying such processes

consists of a finite numberof states or compartmentswith

turnover rates which are proportional to the amounts of material

19
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in the compartments. It is also assumedthat the tracer material

mixes uniformly with its isotope and that its behavior reflects that

of the unlabeled substance. The concept of dividing a biological

system into a numberof fixed compartments is merely an aid in

analysis, since the various states or sites contain finer structure.

However, the compartmental analysis does prove itself useful in

understanding someof the mechanics of the system.

The ma_millary and catenary systems are particular examples

of compartmentalized systems in steady state and they maybe

formally described by meansof the following definitions:

Definition 3.1: The ma=_illary system involves n peripheral

compartments that have turnover rates with a central compartment

but no turnover between the n peripheral compartments.

Definition 3.2: The cstenary system involves (n+l) compartments

that may be thought of as arranged in a chain-like mannerwhere

each compartment has non-zero transition rates only with the

compartments adjacent to it.

For a detailed discussion of these systems one may refer to the

work by Sheppard [1962].

In order to show howa regression model such as that given

by equation (i.i) arises, wewill derive the regression model for

the general (n+l)-compartmental problem and then give the

particular solutions for the mammillary and catenary systems.

Although the following derivations maybe found elsewhere, they

are presented here for completeness. The observations will be taken
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at particular time values; therefore the independent quantity xj

will represent a particular point in time. Since we will want to

consider the expected values of our observations as being

continuous functions of time, we will denote this by writing x in

place of xj, i.e. x denoting any arbitrary time point and xj

representing a particular fixed time point. The following

notation will be used:

E(Yi(x)) = the expected amount of labeled material in the

i th compartmentat time x;

T
rs

th
= the fractional amount of material in the s

th
compartment flowing to the r compartment per

unit time;

E(ni(p)) = the Laplace transform of E(Yi(x))

= f E(Yi(x))e-PXdx.
O

From the discussion in the preceding paragraphs, the following set

of differential equations is formed to describe the general

(n+l)-compartmental problem:

dE (Yi (x)) n+l n+l

= -E(Yi(x)) Z Tr i + 7 Tii.E(Yi.(x)) (3.1)dx r=l i'=l

r#i i'#i

for i = 1,2,...,n+l.

From our knowledge of Laplace transforms we may write the

system of equations (3.1) as follows:
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(p+T11)E(nl(p)) - TI2 E(n2(P)) - ... -Tl,n+IE(nn+i(P)) = E(Yl(0))

-T21E(nI(P)) +(P+T22)E(n2(P))- ..• -T2,n+IE(_n+I(P)) ffiE(Y2(0))

-Tn+I,IE(ql(P))-Tn+I,2E(n2(P))- ... +(P+Tn+l,n+l)E(nn+l(P))=E(Yn+l(0))

(3.2)
n+l

where 3 = E 3 . Using matrix notation we may write (3.2) as:
SS r= 1 rs

r_s

(pl + T)E(n(p)) = E(Y(0))

where E(Y(0)) = _E(Y 1(O)),...,m(Yn+ l(0))_r, E(n(p)) =

=_E(_I(P)),-..,E(nn+I(P))_ T,

(3.3)

T is the (n+l)x (n+l) matrix of coefficients of (3.2) with p = 0,

and I is an (n+l)x (n+l) identity matrix. From matrix algebra we

know that

{Ars(P), r,s=l,2,...,n+l} T
(pl + T)-I- -

ipI + TI (3.4)

where A
rs

th th
(p) is the r row and s column cofactor of (pl + 3)

and Ipl + 31 represents the determinant of (pl + 3).

results we may write

From these

(3.5)
n+l Ai.i(p)

E(ni(p) ) ffi E Ipf+_ I E(Yi" (0)) "
i'=l

Denote the roots of Ipl + _I = 0 by -ll,-12,...,-ln+l since this

is a polynomial of (n+l) st degree in p. If the l's are distinct

then
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n+l _ik
E(ni(p)) = Ek=l (P+Xk) (3.5a)

_ik = [E(ni(P)) (P+Xk)]p _Xk (3.6)

Finding the inverse Laplace transform of E(ni(p)), the solutions for

E(Yi(x)) are given by:

n+l
E(Yi(x)) = Z

k=i

-IkX
alke , i = 1,2,...,n+i. (3.7)

Wenow combine the above results into the following theorem:

Theorem3.1: For the general (n+l)-compartmental tracer experiment

where transfer of labeled material is allowed between any two

compartments, the solutions for the expected amount of labeled

material in the i th compartmentat time x is given by (3.7) if the

roots of the equation Ipl + _I = 0, given by -XI,-X2,...,-Xn+I,

are distinct. The constants _ik are given by (3.6).

From the definition of the characteristic roots of _, we

note that Xl,X2,...,%n+l are equal to the characteristic roots of T.

The assumption that the X's are distinct was madein order to

arrive at a unique regression model. Otherwise, from a knowledge

of Laplace transforms we would have a different model for each

number of multiple roots and also for each different multiplicity

of each multiple root. Therefore all of our discussion pertaining

to regression models of the form given bY (i.i) or (3.7) will be

made under the assumption that the Xk'S are distinct whether this

assumption is explicitly stated or not.
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In addition, the estimation procedures developed in Chapters 5 and 6

have been derived specifically for models of the form given by

(i.i) and (3.7). If it does happen that multiple characteristic

roots of • exist, the compartmental model may be modified by a

procedure similar to that which is contained in the discussion

pertaining to Figure 3.2 in order to eliminate the possibility of

multiple roots.

Throughout the above discussion we have assumed that the

's are all > 0, and Barman and Schoenfeld [1956] have shown that
rs m

n+l

this restriction, along with T = E T is enough to ensure that
rr s=l sr'

s#r

the %k'S have positive real parts, and that pure imaginary

characteristic roots of T arc impossible.

For many of the tracer experiments that one will be faced

with, a fixed amount of tracer material will be present. Therefore

there are only n independent regression equations since

n+l

E E(Yi(x)) must be equal to the fixed amount of labeled material
i=l

present for all va!ue_ of x. We are now able to prove the following

theorem which will be useful in the presentation of the estimation

procedures in Chapters 5 and 6:

Theorem 3.2: For the mammillary and catenary systems, the number

of exponential terms in each regression equation will be equal to

the number of independent regression equations for the case when

a fixed amount of tracer material is injected into the system.
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Proof: For the general (n+l)-compartment mammillary system, the

matrix _ will take the form:

11 0 0 ° + n+1T22 0 "'" -X2,n+l

T

i 0 T33 "'" -_3,n+l• . ..

Tn+l,l -_n+l,2 -_n+l,3 "'" Tn+l,n+i/

_n+l,l 0 0 ... -Tl,n+ 1

0 Tn+l, 2 0 "'" -_2,n+l

0 0 rn+l,3 "'" -_3,n+l

Tn+l,l -Tn+l,2 -Tn+l,3

\
\

"''_l,n+l+'''+Tn,n+i/ (3.8a)

By a number of elementary row and column-operatlons on the matrix

T, it may be reduced to the following equivalent matrix:

Tn+l, 1 0 0 •.. 0
0 Tn+l, 2 0 ... 0

0 0 Yn+l, 3 ... 0

0 0 ... Tn+l, n

0 0 ... 0

\

°\0

0I
0/ (3.8b)

which has rank n and this rank is equal to the rank of T. From

equation (3.7) we note that the number of exponential terms in each

regression equation of our model is determined by the number of

nonzero characteristic roots of the matrix _. The number of
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nonzero characteristic roots of • is equal to the rank of _ (see

Hohn [1964], page 280) and from (3.8b) we note that the rank of T

is equal to n. Since we are assuming that a fixed amount of tracer

material is present in the system, n is also the number of

independent regression equations and our conclusion follows for

the general mammillary system.

For the general (n+l)-compartment catenary system the matrix

T iS given by: \

,' 0 0 0 0 0
/ T21 -TI2 "'" 1

-T21 _12+_32 -T23 0 .-. 0 0 0 1

0 --T32 T23+_43 --_34"'" 0 0 0

0 0

0 0

0 0

\+0 0

•-" -Tn,n_ 1 Tn_l,n+_n+l,n -Tn,n+l _

i (3.9a)
... 0 -_n+l,n _n,n+i/

By a number of elementary row and column operations T can be

reduced to the following equivalent diagonal matrix of rank n:

k

I/T21 0 0 ... 0 0

0 T32 0 ... 0 0

0 0 T43 ... 0 0

1 00 0 0 """ Tn+l, n ,

XxO 0 0 ... 0 O'

Again we use the fact that the number of nonzero characteristic

roots of • is equal to the rank of T, i.e., n.

(3.9b)

Hence we conclude
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that the regression model used to describe the general (n+l)-

compartment catenary system when a fixed amount of tracer material

is present will be a set of n independent regression equations each

being a linear combination of the same n exponential terms. This

completes the proof of the theorem.

From Theorem 3.1 we can now state the following obvious

corollary without proof:

Corollary 3.3: The regression models used to describe the general

(n+l)-compartment mammillary and catenary systems when a fixed amount

of tracer material is present in these systems, are members of the

class of regression models given by equation (i.i) with m = n.

In addition, for the case when the amount of tracer material

in the system is known and fixed, we can divide each of the equations

in (3.7) by this constant and have a system of regression equations

still of the form given by (i.i) in terms of a new quantity which

represents the proportion of labeled material in the compartments

at a time x. Besides the two very general classes of models

contained within the mammillary and catenary systems discussed

above, there also exist other compartmental models that are neither

mammillary nor catenary in nature, but they still give rise to a

regression model contained within the class of models of equation

(i.i) for m = n. One such example is given in Figure 3.1 where

the four numbered boxes represent certain chemical states or

physiological sites, the arrows represent the direction of certain

changes or transitions that take place, and the T 's represent
rs
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the nonzero transition or turnover rates. Figure 3.1 is drawn only

as a visual aid and is not meant to be an exact representation of

the physical situation. From this figure we note that this

example is neither mammillary nor catenary in nature. For this

example the matrix T is given by:

T T21+z41 -TI2 -_14 0 I
-T21 TI2+T32 0 0

0
-T32 TI3 0

\ -T41 0 0 0/
(3.10)

T32

/T 1

T t /"

Fig. 3.1--Compartmental model which is neither mammillary

nor catenary in nature.

which can be shown to have rank three. The number of

characteristic roots of T is also equal to three and hence the

number of exponential terms in each regression equation is equal

to three. Therefore if a fixed amount of tracer material is

introduced into the system of Figure 3.1, then there are three

independent regression equations and each equation will involve a

linear combination of three exponential terms. Again we see that

this example is a member of the class of regression models of
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equation (i.i).

In somepractical situations it mayhappen that even with

a fixed amount of tracer material present in the compartmental

system that it is impossible to determine the amount of tracer

material in each compartment. Onepossible way to circumvent this

dilemma is to propose a simplified model where someof the

unobservable compartmentshave been replaced by a single compartment.

Onepossible example is given in Figure 3.2(a) where we assume

that the observations madeon compartments 2 and 3 are not easily

resolved. For this model the matrix T has rank 2, therefore

(a) (b)

Fig. 3.2--Simplification of a compartmental model

each of the four regression equations will be a linear combination

of the same two exponential terms. If neither compartment 2

nor 3 is observable then this more complex model might be replaced

by the simpler model given in Figure 3.2(B). Compartment 2"

represents the combining together of the original compartments

numbered 2 and 3 into a single compartment. By means of this

modification, for the case when a fixed amount of labeled or tracer
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material is present, our regression model maybe represented by a

system of two independent regression equations each being a linear

combination of two exponential terms. The above discussed

modifications are similar to the ones proposed by Berman [1961]

who was concerned with the application of tracer experiments to

the thyroid system.

Another auxiliary problem that should be considered is the

problem that pertains to relating the coefficients and exponential

parameters of the compartmental models, which are considered here,

to the turnover rates or transition probabilities of the original

system. If we are considering a general (n+l)-compartment system

and if we assumethat nothing is knownabout someof the T 's,
rs

then we may use the following equation derived by Berman and

Schoenfeld [1956] to relate the coefficients and exponential

parameters of equation (3.7) to the turnover rates or transition

probabilities:

T = _X_ -I (3.11)

where e is an (n+l) x (n+l) matrix of the elk from (3.7) and

is an (n+l) × (n+l) diagonal matrix with diagonal elements Ik"

The estimates of the elements of • would then be found by

substituting the estimates of the coefficients and exponential

parameters into e and _, respectively. If some of the Trs'S are

known, such as the case for the mammillary and catenary systems

when some of the • 's are equal to zero, then it is easily seen
rs
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that certain restrictions are imposed upon the other parameters

of our regression model. In Section III of the paper by Berman

and Schoenfeld they propose for this situation a method of

estimating the nonzero elements of T by means of transformations

of the matrix = in (3.11) which preserve the constraints on the

elements of _. This approach then determines a whole class of

models which satisfy the initial constraints. Another approach

would be to substitute the estimated regression equations into the

original differential equations giving us a system of linear

equations in the _ 's after equating the coefficients of like
rs

exponential terms to each other. Since many observations are made

on each equation, usually we would have more equations linear in

the T 's than there are nonzero T 's. Therefore the usual least
rs rs

squares procedure on the complete set of linear equations could be

used to determine estimates of the nonzero r 's. Although the
rs

main concern of the following chapters will be the estimation of

parameters in the regression models of equations (i.i) and (3.7),

we see that it is possible to obtain estimates of the turnover

rates and transition probabilities from the estimates of the

coefficients and exponential parameters of these equations.

3.2 Distributional assumptions concerning

the random variables e..
i]

So far in our discussion no assumptions have been made

about the random variables sij that appear in equations (i.I)

and (1.2). In this section we will state the general



32

distributional assumptions to be used for all of the estimation

techniques to be developed and then we will list the various

modifications that will be used for particular estimation schemes.

The following notation will be needed before the assumptions

concerning the eij are stated:

= , ,E )Ti) ei, (Eil'Ei2 "'" iN for

2) e,j = (elj ,e2j,..

T T
3) e** = (el,,e2,,..

T T
4) e = (e,l, e,2,..

i = 1,2,...,n;

. E )T
' nj for j = 1,2,...,N;

• eT )T which will be an nN x 1 vector;
' n _

T )T which also will be an run x 1 vector.
",E_n

For each value of i and j we assume that E(eij) = 0 and for

each value of i we assume that the N components of ei, are

generated by independent random drawings from a given distribution

with E(Ei,ei ,T) = D and .,T)ii E(ei*ei = Dii. , where Dii is a

diagonal matrix with positive diagonal elements and D... is a
ii

diagonal matrix with nonzero diagonal elements for i # i" and

i,i" = i,2,...,n. Furthermore, we assume that the set of N random

vectors e,j are independent vectors drawn from a given multivariate

distribution. These assumptions allow for correlation between

observations on different equations when they are made for the same

value of the independent variable X.. In Chapters 5 and 6 as well
3

as in the examples considered in this research, the dimension of

X is Ixl and X is the independent variable time. Therefore for

this case these assumptions would mean that we allow for correlation
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between observations madeat the samepoint in time.

In Chapter 4 where a generalized least squares procedure

is developed and in Chapter 5 where a generalized partial totals

estimation procedure is developed, muchof the work will be done

under the a_sumption that Dii = oiil and Dii_ = aii_l for

i,i" = 1,2,...,n and i _ i _ where 0 < oil < _, - _ < aii_ < _,

and I is an N × N identity matrix. This will also imply that

E(eeT) = I Go** where I is an N × N identity matrix,

represents the Kronecker or direct product of two square matrices,

and s,_ = {oii_;i,i_ = 1,2,...,n}. However, a discussion will be

given to a consideration of the modifications that arise when the

general distributional assumptions given above are satisfied. Also

in Chapter 4 we will alter someof the above restrictions to allow

for complete independenceamongthe observations and, in addition,

we will allow E(ecT) = ol where 0 < o < _ and I is an nN × nN

identity matrix. The altering of the assumptions is done in order

to investigate the simplifications that arise. In Chapter 6 where

a generalization to the Spearmanestimation procedure is presented,

we develop the procedure under the general distributional

assumptions given earlier.

So far we have not discussed the specific form of the

distribution function of the randomvariables cij, and for the

development of the estimation procedures no specific form is

required although it is assumedthat E(eij) = 0 for all i and j.

However, with the above stated assumptions we are able to
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investigate some properties of our estimators in the following

cases:

I) The vectors e,j, j = 1,2,...,N, each have a multivariate

normal distribution.

2) The vectors e,j, j = 1,2,...,N, are each distributed according

to the multinomial distribution.

It is quite obvious that we have not considered all

possible distributions for the random variables _ij" However, by

investigating the estimation procedures under the normality and

multinomial assumptions we have considered distributions of

practical importance. Moreover, under certain conditions realized

in practice, distributions such as the Poisson, binomial, and

multinomial tend to a normal distribution. Therefore a normal

distribution may be a very good approximation even when it is not

the true distribution of the random variables in our model.

For example, when we are measuring the proportion of

radioactive tracer substance present at a site at a particular

time, these measurements will usually be a ratio of random

variables with the denominator related to the initial count and

the numerator related to the count at the particular time of

observation. If we could think of the denominator as being a

constant and the numerator as being a Poisson or truncated Poisson

random variable, then the distribution of the ratio could be

approximated by a normal distribution when the mean of the Poisson

random variable in the numerator and the denominator
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relative tc the mean of the numerator are both large. This is true

since a Poisson distribution can be closely approximated by a normal

distribution when the m_en of the Poisson distribution is large.

The last requirement concerning the relative magnitude of the

denominator and the mean of tile numerator will mean that the

probability of an observation being greater than one is small.

For those cases where our observations might be considered

as a ratio of two randon_ variables, a great deal of unwieldiness

arises in the determination of the exact distribution of such a

ratio as can be seen by referring to the work by Curtiss [1941],

Donahue [1964], Fieller [1932]_ Geary [1930], Gurland [1948], and

Merrill [1928]. Powever, there are some results that would appear

to justify the use of a normal approximation to the distribution

of our observations. For example, in radioactive tracer experiments

various adjustments are made on the observations to account for the

radioactive decay a_d this in turn will lead to non-integral values.

More specifically, let an observation y be represented by the

ratio Yl/y 2, where the distributions of Yi and Y2 are given by

N(_ I, O_) and N(_2, o_)_ respectively° The correlation coefficient

of Yl and Y2 will be denote4 by 0. Merrill [1928], through the

use of graphs and tables, demonstrates the approximate normal

distribution of y under the following conditions:

i) The coefficient of variation (c.v.) of Y2 is small.

2 2 i

2) The quantity 72- 0 - 20_--_2 + -_ is small.
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The first condition would imply that the standard deviation of Y2

is muchsmaller than the meanof Y2' and this condition is

obviously =atisfied for the example considered earlier when Y2

is a Poisson randomvariable with a large mean. It can be shown

that the second condition could also be satisfied when p is small
c.v. of Y2

and the ratio is small. For those situations where our

c.v, of Yl

observations denote the proportion of radioactive tracer present at

a site at a particular time, then the above conditions could be

satisfied if we thought of our observation as being a ratio of

independent Poisson random variables each with a large mean such

that the mean of the denominator is much larger than the mean of

the numerator, which will mean that ratios greater than one are

unlikely. Hence the results of Merrill confirm the reasonableness

of a normality assumption in many practical situations.

Since we had mentioned earlier that we would consider the

case where our observed random variables would follow a

multinomial distribution, now we want to demonstrate how such a

situation could arise in an experimental situation. Consider the

case where we have n independent Poisson random variables

ZI,Z2,...,Zn with parameters KI,K 2,...,Kn, respectively. Let

• represent the values that our respective n
Zl, Z2,. -,z n

independent Poisson random variables take on, then for the situation

where we assume that Zl#Z2 +'''+zn remains fixed, the conditional

distribution of ZI,Z2,...,Z n follows the multinomial

distribution given by:



(Zl+Z2+...+Zn)!

Zl!Z2!'''Zn!
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zI z2 zn

<i <2 . • , n

g
<Zl <z2 < n

where < = <1+<2 +'''+<n" The above result can be shown by a direct

generalization of the results given by Birnbaum [1954] and Bross

[1954]. Therefore for the case when the sum of our observed

independent Poisson random variables remains constant, the joint

conditional distribution of these random variables is given by the

appropriate multinomial distribution. As Zl+Z2 +'''+zn becomes

large, the multinomial distribution tends to an (n-l)-dimension

multivariate normal distribution, hence making not only the

multinomial but the normal model a reasonable approximation to the

actual situation.



IV. GENERALIZEDLEASTSQUARESESTIMATION

4.1 Introduction

In this chapter a g_neralized least squares estimation

procedure, which will be used for the estimation of the parameters

in equation (i=2)_ will be developed and evaluated. At the present

time, most of the least squares methods of estimation in nonlinear

regression equations appear to have been restricted to the situation

where only one regression equation is present, as the literature

cited in Chapter 2 demonstrates. In addition to the articles

presented in Chapter 2, one might refer to the articles by Hartley

and Booker [1965], Stevens [1951], and Turner et. el. [1961] for a

demonstration of this fact. With respect to estimation procedures

that attempt to estimate the parameters present in a set of

regression equations simultaneously, Turner et. el. [1963] present

a generalized least squares estimation procedure for a set of

nonlinear regression equations when the covarlanee matrix of the

Eij terms of (1.2) is assumed to be known to within a constant

multiplier. However it appears that most of the recent work has

been done with a set of linear regression equations, as a reference

to the articles by Telser [1964] and Zeliner [1962] can show. Hence

after outlining in Section 4.2 the nonlinear least squares technique

for the case when n = i from equation (1.2), we will develop in this

38
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chapter a generalized least squares estimation procedure to be used

inestimatlng a set of parameters simultaneously in a set of

nonlinear regression equations. The results given in this chapter

except for a portion of Section 4.4 are also presented in the

article by Beauchamp and Cornell [1966], which was written during

the time when research was being carried out for this dissertation.

For the sake of completeness we will repeat these results here.

4.2 Single equation least squares estimation

Since some of the techniques used in single equation least

squares estimation will be carried over into our generalized least

squares procedure discussed in Section 4.3, we will now outline an

iterative least squares estimation technique as we indicated in

Section 212. Since we will present the case here when n = 1 from

equation (1.2) and for this case i = 1 only, the subscript i will be

dropped in order to simplify the notation.

Let yj represent a value that the random variable Yj has

taken on for the particular value of the independent variable X. and
J

let yl_ y2,,..,y N be a set of N independent observations drawn at

random from a given population, so that E(Yj) = f(Xj;8) where f is a

continuous dlfferentiable function, X.is an h x 1 vector of
3

independent quantities assumed to be known, and 8 is a p x 1 vector

of constant parameters to be estimated. The estimation of the

elements of the vector 8 by least squares techniques involves the

minimization of the expression:
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N< )2_(8) = E= yj - f(Xj;e) .
jl

(4.1)

If 8b, b = 1,2, ....,p, represents an element of the vector 9, then in

order to determine the value of e that minimizes _(e), we must solve

the following set of equations:

= o, b = 1,2,....,p. (4.2)
_0b

If f is linear in the elements of 8, then (4.2) is a set of linear

equations in the elements of O and may be easily solved for the

A

least squares estimator of O, denoted by O: For the case when f is

a nonlinear function, the iterative technique presented here, which

will bereferred to as the Gaussian iterative technique, involves the

expansion of the function f(Xj;O) in a Taylor series about some
^

preliminary value of O, say 80, and truncating after the linear
^ .

terms in (0b-o0b) O By using this approximation we are minimizing

the expression:

N <yj_ofj_o_ 1 ofJ ^ f(p)_2** = j_l (i) 6= op oj /

^ ^ f = f(Xj;o_) _b) _f(X.; 8)
where o_b = (Sb-oOb) , o j ' of = _b S o for

(4.3)

b = 1,2,...,p and j ffi1,2,...,N. The Gaussian method would solve

the new set of equations:

_* =^ 0, b = 1,2, ....,p,

Bo6 b

(4.4)
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and then find a new estimate of the eb's by takingfor o b 's_

18b = oeb + o_b for b = 1,2,...,p. The new vector 18 would be

substituted in the place of 8 and a new set of increments !6b wouldo

be calculated. This process would be continued until the increments

become sufficiently small.

Hartley [1961] considers the problem of convergence, which

we mentioned in Section 2.2, and presents some assumptions and

modifications to the Gauss-Newton estimation procedure. This

modified Gauss-Newton method, which has the merit of guaranteed

convergence under the assumptions to be stated below, may be briefly

described as follows:

i) The first step of the modified procedure involves the

^

determination of the vector i_ by the usual Gaussian method

described previously. However in the place of the vector

A _ ^ ^ ^

18 = o8 + 16 , Hartley uses the vector o8 + v16 where v is a scalar

and0 <v<l.

2) The vector

^ ^

° o + v 16 is substituted into ¢ (O) giving us

N (yj_f(Xj ^ ) 2Z ;oe + v 1_) ,
j=l

(4.5)

from 0 to i, giving the value of v denoted by Vmi n. Hartley

suggests the following method to approximate the value Vml n .
i

^ A -- ^ ^ ^

(i) Calculate ¢(oe), ¢(oe + 2 16), and _(oe + 16) ; (ii) determine

the value of v for which the parabola through these three points

attains its minimum; and (iii) denote this value of v by v*. and
_Lln

which is considered as a function of v and minimized over the range
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take this as an approximation to Vmin. This parabola maybe found

by using the LeGrange interpolation formula.

^ ^

8 + v i_ or in most practical situations the3) The vector o min '
^ A A

vector 08 + V*.mln 1_ is substituted in the place of oe and the

above procedure is repeated until the vector of increments is

sufficiently small. It should be noted that the desirable

properties of this estimation procedure are given in terms of Vmi n

instead of its approximation V_n.

Sufficient conditions for the convergence of the estimators

found by this modified procedure to the solution of equations (4.2)

using Vml n as defined above are given as follows:

i) The first and second derivatives of f(X;e) with respect to the

elements of 6 are continuous functions of the elements of 8 for

all X.

2) For any non-trivial set of Ub, b = 1,2,...,p, with >0,

b=l

l f (Xj ;8) > 0b =l
(4.6)

for the observed vectors Xj and for all 8 in a bounded convex set S

of the parameter space.

^

3) It is possible to find a vector 8 in the interior of S such that
O

^ inf ~
< _ , where _ = lim _(e) and S is the complement of S._(oe)

The above three assumptions on the function f(X;e) might

appear to be restrictive assumptions as stated. However, the first

assumption merely allows us to define the set of equations as given

by (4.3) and (4.4). The second assumption allows us to determine
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the solutions to equations (4.4) and is equivalent to the full

rank criterion in a linear least squares problem. For a regression

model specified as a linear combination of exponentials the first

assumption is obviously true, and if the exponential parameters are

distinct then the second assumption is obviously true. As has been

pointed out by Hartley in his article, the third assumption is

particularly difficult to verify if the surface represented by _(0)

has numerous local minima and/or maxima and/or saddle points. For

this process to converge to the absolute minimum of _(0), the third

assumption states that we must begin our estimation procedure in a

region that contains the absolute minima and no local minima. This

may be difficult to verify, but in some situations it is possible to

search the parameter space at a wide grid in order to locate an

^

initial estimate e in the region S. However, if the parameter
o

space is unbounded or of high dimensionality then the grid search

may be unfeasible; and, in addition, the grid search implies further

assumptions about the smoothness of _, hence of f.

It should be noted that for the regression model given by

J.

(1.2) with n = 1 that the least squares estimator for e is

equivalent to the maximum likelihood estimator, when it is assumed

• ,a2)that the random variables _. are independent with a N(0
3

distribution. This can be easily seen since maximizing the

likelihood function
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NI__(i )L = H exp (yj-f(Xj ;e)) 2
j=l 2_ 2 2_ (4.7)

is equivalent to minimizing the expression

¢(8) = Z= yj-f(Xj;e) 2 . (4.8)
jl

4.3 Presentation and evaluation of estimation procedure

Referring back to equation (1.2) we note that there are nN

T

responses Yij' i.e. N independent vectors y,j = (Ylj 'Y2J ''" "'YnJ )

of observations for each value of the fixed input vector Xj. The

elements of Xj are assumed to be known. Also from equation (1.2) we

note that we want the same set of fixed input vectors for each

regression equation or equivalently for each value of i. When X is

a scalar and represents the independent variable time, this

restriction means that we observe each of the n equations at the

same N time values. This restriction will be relaxed in a later

section of this chapter.

Before presenting the actual steps of this estimation

procedure we will define the following notation:

,ynj)T (y,T T y,T) TY*j ffi(YlJ'Y2j'''" ' y = Y*2 "'" '

f*J ffi(fl(Xj;8) f2(Xj;e) ... fn(Xj;g))T ,

T

T T fT
f = (f*l f_2 "'" *N )

T

, where Xj = (Xjl, xj2,...,Xjm) •
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With the above notation we may write equation (1,2) in the following

matrix form:

y ffif + e (4.9)

where e has been defined earlier in Section 3.2.

equation (2.1), we now want to determine a vector

(el  p)T8 = , ,..., which will minimize

Generalizing from

= (y_f)T _ -l(y_f) (4.10)

^ ¢¢Twhen evaluated at 8 = % for _ = E( ) = I B o** as defined in

Section 3.2. The generalized least squares estimation procegure to

be presented will be given first for the case when _ is assumed to

be known and then it will be extended to the case when _ is unknown.

The first step in the estimation procedure will be to expand

each one of the n regression equations in a Taylor series through

the linear terms about a vector of preliminary estimates of the

elements of 8, say

^ ^ ^
8 = (08 08 ""'o po I' 2' )T (4.11)

to give

^.

f -" f + f" _ (4.12)
0 o 0

where in addition to the definitions already given we have
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f = ( f T f T ... f T T
o "o *i o "2 o *N" '

of*J = <fl(Xj;o_) f2(Xj;o_ ) ... fn(Xj ;o_))T

for J = 1,2,...,N,

of" =<(ofl )T (of2)T ... (ofn)T>T,

^

_3fi(oe;X i)
f_ =o L 305 , row corresponds to i = 1,2,...,n;

column to b = 1,2,...,p } , and o_ = O -o _" For the

case when _ is assumed to be known we can use Hartley's modified

Gauss-Newton procedure to calculate a vector of least squares

estimates for the elements of 8 in our nonlinear model. In order

to keep from any ambiqulty arising, the generalized form of the

assumptions which were originally given in Section 4.2 are stated:

I) The first and second derivatives of any fi(X;8), i = 1,2,...,n,

with respect to the 8b, b = 1,2,...,p, are assumed to be continuous

functions of the elements of 8 for all vectors Xj,J ffi1,2,...,N.

2) The following inequality

N _ 8fi(Xj ;8) )
E P >0

J-Z =i % _eb

is assumed to hold for i = 1,2,...,n, for any non-trivlal set ub

with r > 0, for the observed vectors Xj, and for all 8 in a
b=l

bounded convex set S of the parameter space.

3) A vector ° _ exists in the interior of S such that _(o _) <
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where- llm inf ~¢ = _ ¢(8) and S is the complementof S. For the

significance of these assumptions in a practical situation, one can

refer to the discussion in Section 4.2.

Hartley's modified procedure starts with the usual weighted

least squares estimate _ of the increment vector (e-oS),where
O

^

Then the vector o- + v o6 is considered where 0 _< v_< i, and is

substituted for 8 in ¢. Then ¢ is considered as a function of v and

^

this is denoted by _(08_ + v 06). The value of v which minimizes

_) Vmi n ^ ^_(o _ + v iS denoted by and the vector is 8 + v 6 iso o min o
^

substituted in the place of 8. This process is continued until the
O

vector of increments becomes sufficiently small. The following

theorem makes it possible for us to appeal to the results already

proved by Hartley concerning the property of guaranteed convergence:

Theorem 4.1: Under assumptions 1 - 3 given above for the case when

R is known, the results proved by Hartley for the single nonlinear

regression model carry over to the regression model given by

equation (4.9), i.e. the iterative procedure converges and provided

no two stationary points of _ yield identical values it converges

to the minimum of _.

Proof: Since fl = I _ o** and o** is positive definite, we know

= -i fi-ithat _-i I _ o** and is also positive definite (see Hohn

[1964]). Therefore fl-i may be written as UT U where U is a

ZTnonslngular matrix, and _ may be written as g where Z = U(y-f),

(4.13)
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i.e. _ may be written as a sum of squared deviations. Hence the

problem has now been reduced to the same problem as that considered

by Hartley in which he proved that this estimation procedure had

the property of guaranteed convergence to the minimum of _ when the

assumptions are satisfied.

For the case when _ is unknown we follow anapproach similar

to the one presented by Zellner [1962]. Recalling from Chapter 3

that _ = I _ o**, the problem here will be to specify estimates

for the elements of the matrix o**. In order to do this we fit each

of the nonlinear regression equations separately and compute a

least squares estimate _(1) of 8 for the ith equation,

i = 1,2,...,n. Then the estimates of the elements of the matrix

^

o**, which form a matrix denoted by o**, are given by

^ ^T ^

Oii_ = ei, ei,,/N

.... T ^ ;_(i)
where ei, = (Ell El2 ... _iN ) and _iJ = Yij - fi(X_ ) for

i,i" = 1,2,...,n and j = 1,2,...,N. The following lemma

demonstrates that oii. is a consistent estimator of oii.:

Lemma 4.2: Under the aseumptions of Hartley's modified Gauss-Newton

procedure (or any other procedure that will lead to an estimate of 8

that minimizes E yij_fi(Xj;8 ) 2 for any i) and the assumption
J=i

of normality of the distribution of the vectors £i*' the estimators

Oil. are consistent estimators of oii_ where i,i _ = 1,2,...,n.

Proof: From Theorem 4.1 _(1) is a least squares estimate of 8, and

(4.14)
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since ci, is normally distributed, _(i) is the maximumlikelihood

estimator of 8 for the ith equation and therefore it is a consistent

estimator of e. This last statement can be demonstrated by _howlng

that the normal density function satisfies the three conditions

given by Cra_r ([1946], page 5C0) concerning the asymptotic

properties of maximum likelihood estimators. In the demonstration

of these sufficient conditions we use the fact that the vectors ¢I*

are independent and identically distributed. Next ccnslder

^IN[ fi(Xj;81Oil = g j_ 1 (ylj_fi(Xj;8)) + (fi(_;8) - (1)))

Using _eorem 5 and Example 4.3 from Pratt [1959] along with

_intchlne's theorem (see Cra=dr [1946], page 254) we can show that

A

oli_ converges in prob_ility to Oil.. Hence from the definition
^

of a consistent estimator, oil. is a consistent estimator of ull..

_e following theorem demonstrates some of the deslr_le

as_ptotlc results when the previously defined estimators for the

elements of _ are used for the ease when _ is unknot.

_eorem 4.3: Under the assumptions of Lemma 4.2 the estimator of 8

^

found by _nimlzing # = (y_f)T 6-1(y_f) will converge in probability

to the estimator found by mini_zing _ and will be a consistent

estimator of 8.

Proof: Let ** = , i,i" = 1,2,..., and let _ = I o**,
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_ _ = (y_f)T _-l(y.f) _ (y_f)T _-l(y_f)

_- (y_f)T(_-i _-l) (y_f)

and from Lemma4.2 this converges in probability to zero. Therefore
^

the minimum of ¢ converges in probability to the minimum of ¢ and

A

also the estimator of 8 found by minimizing ¢ will converge in

probability to the estimator found by minimizing _. Moreover under

the assumption that the vectors ci, each have the same multivariate

normal distribution, the estimator of e found by minimizing ¢ will

correspond to the maximum likelihood estimator. Hence the estimator

^

of 8 found by minimizing _ will converge in probability to the

maximum likelihood estimator and thereby is a consistent estimator

of 8 by using a similar type of discussion as given in Lemma 4.2.

4.4 Modifications to the estimation procedure

We now want to present some modifications to the above

generalized least squares estimation procedure that will make it

more generally applicable. The situation we consider arises when

observations are not available on each equation for each value of

the independent variable X. Suppose that we have Ni observations

on the ith equation and that all of the Ni are not necessarily
N

equal. Let N. - E N i and let N equal the total number of different
i--l

input vectors Xj for all n equations. In general N.I --< N, however

N i = N when the same set of input vectors is used on each of the n
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regression equations. Let the definitions of y,j. f,j, and e,j as

given earlier apply now as if observations were made for each on all

N of the X. input vectors. For each value of i define the new
3

D

vector y,j which is obtained from the vector y,j by deleting those

elements from y,j for which there are no observations. The vector

D D _D
e,j and the matrices f,j and are defined similarly. Other

D D D _D
quantities are constructed from y,j, _,j, f,j, and Just as they

were from y,j, e,j, f,j, and _ Section 4.3, and these quantities are

also labeled with the superscript D. Corresponding to equation

(4.10), when a different set of input vectors is used on some of the

n regression equations we have:

_D = (yD_fD)T (_D)-I (yD_fD). (4.16)

D

In order to calculate the estimates of the elements Oil. of

_D, the N. observations on equation i are used to find the least
1

squares estimator of 8, denoted by SD(i). Then

^D ^D T ^D

Oil = (_i,) (Ei,) /N i. (4.17)

^D

To compute oii. for i # i', let N... equal the number ofII

observations on equations i and i" that have the same Xj input

vectors, where we require Nii_ > 0. The N.. observations on eachii "

of the equations i and i _ are then used to compute separate single

equation least squares estimates of 8 denoted by 8D(ii') and 8D(i'i)

respectively.
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^D (_Di ,)T ^D ,) /N. (4.18)Oii_ = (ei. i xi"

^D
where _ , is computed using $D(ii') ^D

, Ei_ *
ii_ i

is computed using

0D(i'i), and each is a vector with Nii. elements. Next an iterative

^

procedure for estimating % is started by computing 6 using equation

fjD, 6D, D(4.13) after setting f" = _ = and y = y . In order for
o o

the limiting properties of these modified estimators to hold we also

assume that as N. --> _, Ni--> _ and Nil. --> _ for each i and

i'_i.

At this point we will demonstrate the modifications that

arise when some of the distributional assumptions are altered.

First we will assume that _ = o I where 0 < o < = and I is an

nN x nN identity matrix, i.e. the vector e is assumed to bc made up

of independent and identically distributed random variables. To

obtain the least squares estimator of 0 for this case we minimize:

n N

¢ = E X_l(Yij-fi(Xj;O))2. (4.19)
i=l J-

From an investigation of (4.19) we see that this expression is

similar to the expression to be minimized for the single nonlinear

regression equation problem. Therefore all of the procedures,

properties, and conditions carry over to this case from the single

equation case. Obviously under the assumption of normally
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distributed cij for all i and j, the least squares estimator of 8

found from minimizing (4.19) is equivalent to the maximumlikelihood

estimator of 8.

Next let us consider the case where _ is a diagonal matrix

given by:

ii11'-°)I _ . 0

0 0 ... o
nn

= _ (4.20)

where I is an N x N identity matrix. To obtain the generalized

least squares estimator of 8 for this case we minimize

= (y_f)T _-l (y_f)

n N (yij-fi(Xj ;8)) 2
= Z E

i=l j=l °ii

(4.21)

For the situation where the elements Oil are assumed to be known,

the estimation procedure will be the same as those previously

discussed. For the case where the elements Oil are unknown, then we

obtain consistent estimators of oii by the same procedure as we

discussed earlier using the observations on the ith equation. The

estimation of e is simplified for this case since we do not have to

estimate elements of the form o.._ for i _ i _.
11

For the case when E(_ij eij_) is not independent of J and

these covariances are unknown, then instead of allowing only one
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observation on each equation at each value of Xj we must have more

than one observation on each equation at each value of Xj in order

to estimate the necessary variances and covariances. Let nij

represent the numberof observations madeon the i th equation for

the input vector Xj, and let all of the nij be equal, say to I. Then

these £ observations would be used to obtain an estimator of E(e_j)

in a manner similar to that used in equation (4.17) to obtain an

estimator of oii. Similarly we find estimators of E(eij eij.) ,

E(eij ci.j) , and E(eij _i.j.) where i # i" and j # j'. With

consistent estimators now provided for the covarlance matrix, we

proceed to estimate the vector 8 by the same method we described

earlier.

Another example, similar to one discussed earlier, except

that multiple observations at each value of Xj on each equation

would not necessarily be required, would be the case when

2

g(eij ) = fi(Xj;8), and E(eij_i. j) = E(eijeij.) = E(Eijei.j.) = 0 fcr

i,i" = 1,2,...,n, j,j" = 1,2,...,N, i # i', and J # J'. This is a

more general example of equations (4.20) and (4.21), and it can be

shown for this particular case that _ reduces to

n N (Yij-fi (Xj ;8) )2
_= Z E

i=l J=l fi(Xj ;O)

This situation might arise when our random variables where related

to a Poisson distributed random variable. Although some of the

above cases become much more involved than the originally discussed

(4.22)
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case, these modifications do show that it is possible to apply this

generalized least squares estimation technique to a variety of

classes of distributions for the vector e.



V. A GENERALIZEDPARTIALTOTALSESTIMATIONPROCEDURE

5.1 Introduction

As we indicated in Chapters i and 3 there are numerous

examples of experimental situations in the fields of biology,

chemistry, and physics that yield data which are easily described

by equations of the form (i.i). Cornell [1956, 1962] develops an

estimation procedure based on the concept of partial totals that

maybe used in estimating the parameters in equation (I.i) for the

case n = i. In Section 5.2 wewill outline this partial totals

estimation procedure for the sake of completeness, since the

results presented there will be used in succeeding sections.

In Chapter 3 we demonstrated for the (n+l)-compartment

mammillary and catenary models that the n independent equations

describing the experimental situation are each a linear combination

of the samen exponential terms, that is, for equation (I.i) that

m = n in this situation. Section 5.3 will be devoted to the

development and description of a generalized partial totals

estimation procedure for the regression model of the type given by

(i.i) for the case whenn = m and the values of the independent

variable xj are equally spaced. In Section 5.5 certain alternatives

will be suggested for the cases when someof the observations are

not taken at equally spaced values of x.. In Section 5.4 some
J

56
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theorems will be presented concerning someof the properties of the

estimators found by this generalized estimation procedure.

5.2 Single equation partial totals
estimation

The results in this section are contained in the work by

Cornell [1956, 1962]; however, we repeat them here since someof

the results will be needed for the generalized procedure to be

presented in the next section. In this section we will again

suppress the subscript i.

where

Let Y. be an observable randomvariable
3

m -%kXj
Y. = E _k e + _. = E(Yj) + ej,
3 k=l 3

(5.1)

for j = 0,1,2,...,2Mm-i where M is a positive integer. We will

assume that x. = hj for all j where h is a positive constant, so
3

x° = 0 and X_+lj - x.3 = h, Next we form the following partial

totals:

qM-i qM-I m -Xkh j

E = E E(Yj) = l E _k e
q j=(q-l)M j=(q-l)M k=l

• (5.2a)

for q = 1,2,...,2m. Since

qM-I -_.khJ
e

j=(q-l)M

we may now write (5.2a) as:

m -Xkh(q-l)M -Xk hM

E = E _k e (l-e )
q k=l -lkh

(l-e )

is a geometric series,

(5.2b)
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Let AI,A2,...,A m represent the m elementary symmetric functions of

-XIhM -X2hM -lmhM
e ,e ,...,e , i.e. A

r
is the sum of all possible

-XkhM
distinct products of the e taken r at a time. If we let

A = i, then we can show that the following set of equations is
o

satisfied:

m+l

Z (-l)
r=Z

2m+l-r

Am+l_ r lq+ r = 0
(5.3)

for q = O,1,...,m-l.

We note that (5.3) is a set of m equations which are linear

in the m unknowns AI,A2,...,A m. Therefore we next set the

quantities E equal to the corresponding observed partial totals
q

qM-i

S = E

q J=(q-l)M
yj for q =:i,2,.,.,2m where yj represents the

observed value of the r.v. Yj, and we solve the resulting set of

linear equations corresponding to (5.3). The solutions to this

set of linear equations give us estimators L of the symmetric
r

functions A . r = 1,2,...,m. Since the L estimate the symmetric
r" r

-XkhM -_khM
functions of e , estimators of the quantities e may be

found by obtaining the m roots of the polynomial equation:

m m-i m-2
w - LlW + L2w -...+ (-i) m Lm = O. (5.4)

Let the roots of this equation be denoted by Wl,W 2,...,w m.

^ i

the estimators of the Xk are given by Xk = - _ inwk for

k = 1,2,...,m.

Then
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To obtain estimators of the parameters =l'''''_m the

following subset of equation (5.2b) is solved by elementary
^ ^

methods for _l'''''_m"

^

^ _ %khM
m ^ -%kh(q-l)M l-e

= E _k e
Sq k=l -_kh

l-e

, q = 1,2,...,m. (5.5)

Cornell [1956, 1962] also develops the partial totals

estimation procedure for the following regression model:

m -%khJ

Yj = + E _k e + e.a° k=l 3
(5,6)

for j = 0,i,...,(2m+l)M - i. For this case we form the differences

m -_kh(q-l)M -_khM) -_k h
Eq - Eq+ I = kElake= (l-e 2/(l-e )

(5.7)

for q = 1,2,...,2m+i. After substituting S - S for E - E
q q+l q q+l'

the solution for the estimators L of A is the same in terms of
r r

the differences S - S as that given by the solutions of (5.3)
q q+l

in terms of the S substituted in the place of _ . The estimators
q q

^

of _l,_2,...,_m are found by substituting S and _k in place ofq

E and %k respectively in the first m equations of (5.7).q
^

Finally, an estimator of _ may be found by substituting SI, %k0

^

and ek for El, Xk' and _k' respectively, in the following

m (l_e-%k hM)

: + E ek _Akh . (5.8)E1 Ma° k=l

(1-e )

equation:
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Moreover, Cornell also proves that the estimators of the

parameters in (5.1) and (5.6) found by this partial totals approach

are consistent estimators under the following assumptions:

i) The random variables e. are independent for all values of j.
3

2) The random variables e. are identically distributed for all
3

values of j in the same group or partial total.

3) The domain of the independent variable x. = hj remains constant
3

for each group or partial total as M + _, i.e. as M + _ we must have

h ÷ 0 but Mh remaining constant. Finally, the asymptotic normality

of the distributions of these partial totals estimators is

demonstrated by Cornell.

5.3 Description and development of the

generalized partial totals

estimation procedure

Although this estimation procedure was motivated by the

consideration of the regression equations that arise when we are

concerned with tracer experiments, this section will present the

estimation technique for two more general cases; then by a

reference to Theorems 3.1 and 3.2 of Chapter 3, we see that these

models relate to the tracer experiment problem of interest. The

two more general cases may be described as follows:

Case I: The regression model is given by:

n -XkX j

Yij = k=iE_ik e + eij, (5.9)

for i = 1,2,...,n and j = 0,1,...,(n+l)M-l, where the observable

random variable Yij takes on values denoted by Yij"
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Case II: The regression model is given by:

n -_kXj

Yij = _io + E + (5.10)k=l_ik e eli,

for i = 1,2,...,n and j = O,l,...,(n+2)M-l, where the observable

random variable Yij takes on values denoted by Ylj"

In the above two cases we are assuming that n and M are positive

integers, the coefficients _ik are real numbers, and the exponents

%k are distinct positive real numbers. Since we will want to take

our observations at equally spaced values of the independent

variable x.,3 we will assume that xj = hj where h is a positive

constant.

The estimation of the exponential parameters will involve

the application of a partial totals approach similar to that

discussed by Cornell [1956, 1962]. First we will consider the

estimation of the exponential parameters for the regression model

given by Case I. The first step will involve the grouping of the

observations from each equation into (n+l) groups each containing

M observations, and then the formulation of the following partial

totals:

qM-I qM-i n -%khJ qM-I

E = E E aike + E
j=(q-l)M Yij j=(q-l)M k=l j=(q-l)M Cij

qM-i

= liq + l
j=(q-l)M Eli

(5.11)
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qM-I

= ffi E E(Y..).
for i ffi1,2,...,n and q 1,2,...,n+l where Eiq

j=(q-l)M

Now for each value of i we can use the same steps that were used to

derive equation (5.3) to show that the following equation is

satisfied:

AnEil - An_iEi2 + An_2Ei3 -...+ (-l)nAoEi,n+ I = 0 (5.12)

for i = 1,2,...,n where Ar, r = 1,2,...,n, are the elementary

-kkhM
symmetric functionsof e , i.e. they equal the sum of all

-XkhM
possible products of the terms e taken r at a time. In

addition, we define A = i. Therefore, since i = 1,2,...,n, in
O

equation (5.12) we have n equations in the n unknowns A . Hence
r

qM-i

ffi E for E

by substituting Siq j=(q-l)M Yij iq
we may easily solve for

estimators of A which will be denoted by L . From these estimators
r r

of the elementary symmetric functions we may now obtain estimators

-XkhM
of e for k = 1,2,...,n. Using the same properties of

elementary symmetric functions that we used to derive equation

-XkhM
(5.4), the estimators of e , k ffi1,2,...,n, are obtained by

finding the n roots of the polynomial equation:

n n-i n-2
- LlW + L2w -...+ --(-i)n Ln = 0W o (5.13)
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Let the roots of (5.13) be denoted by w ,w , .,w n. Then the
^ i 2 ""

estimators of _k are given by _k = _ In Wk,k = 1,2,...,n.

For Case II given by equation (5.10) we group the

observations into (n+2) groups each containing M observations,

and then form the following partial totals: S_q = Siq - Si,q+ I

for i = 1,2,...,n and q = 1,2,...,n+l, where the partial totals

qM-1
= E . For each

Siq j=(q-l)M Yij S_q there is a corresponding

E_q = Eiq - Ei,q+l, and we can show that the following equation

is satisfied by the Z[q:

_ _ n . = O,
AnE_l An_IE_2 + An_2E_3 ...+ (-i) AoEi,n+ I

i = 1,2,...,n, i.e., this set of equations is the same as (5.12)

's have been substituted for Ziq'S. The Aexcept that E_q r'

r = 0,1,2,...,n, are the same as those defined earlier. We now

proceed as in Case I to obtain estimators of the exponential

parameters using the S_q'S instead of the Siq'S , i = 1,2,...,n

and q = 1,2,...,n+l.

At this point we want to estimate the coefficients in the

set of equations (5.9). To obtain these estimators we will

substitute the estimators of Ak' found by the partial totals
^

procedure described above and denoted by kk' into our set of n

independent equations and use a least squares procedure to estimate

the unknown linear coefficients. We will proceed as if there did

not exist any functional relationships between the exponential

(5.14)
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parameters and the linear coefficients. If the exact relation is

known between the exponential parameters and the linear coefficients

and if the linear coefficients are completely specified by the

exponential parameters, then the values of the estimators of the

exponential parameters can be substituted into these relations

giving us estimates of the linear coefficients. If the exact

relation is known between the exponential parameters and the linear

coefficients but the linear coefficients are not completely

specified by the exponential parameters, then the values of the

estimators of the exponential parameters can be substituted into

these relations giving us a set of regression equations for the

remaining parameters. If the system of equations is linear then

we can proceed in the same manner as described below, and if the

system of regression equations is nonlinear then we can use an

iterative technique such as that described in Chapter 4.

In order to reduce the amount of space needed to write

the necessary equations, we will use matrix notation. Therefore

we will need to define the following vectors and matrices for

i = 1,2,...,n:

(T T T T T
y** = yl,,Y2,,...,yn, ) , where Yi*

T T T T T

_** = (_l,,_2,,...,an,) , where _i*

T T . eT )T T
e** = (el,,_2,,.. ' n* , where el,

= (Yio'Yil '' ""'Yi, (n+l)M-i) ;

= (eil,_i2,. • .,Sin) ;

= (eio,eil,...,e i (n+l)M_l);
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Ii 1 ... i 1-Xlh -X2h -Xnh

I" ° )
-2Xlh -2X2h

z _'/? _': "'" "
e-[ (n+l)M-l]_lh -[ (n+l)M-l]X2h "-[ (n+l)M-l]Xnh /e ... e .

Using the above definitions we may now write the complete set of

equations given by (5.9) as follows:

y** = DZe** + e**

2
where D z is an [n(n+l)M] x n matrix with Z matrices along its

diagonal, i.e.,

(5.15)

D Z /i° il= Z

0

where the O's in the above matrix are matrices of the appropriate

dimensions with only zeros as elements•

Let Q be the covariance matrix of the vector e** which

we discussed in Section 3.2. If we knew the elements of

and the true values of the exponential parameters, then the

usual weighted least squares estimator of the vector _** would

be taken as:

^ T -I -i T -i

a** = (Dz_ Dz) (Dz_ y**).
(5.16)
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Since, in reality, we do not know the elements of the matrix _ or

the true values of the exponential parameters, we will substitute

our partial totals estimators of the exponential parameters into

the ith regression equation and obtain the usual least squares

estimators of the linear parameters in the vector el* by

^ (_T_)-l_Tyi, '

where Z is the matrix Z with the partial totals estimators

substituted in the place of the unknown parameter values. Doing

this for each value of i = 1,2,...,n, we find the estimators of

ei, by

_i* = Yi* - Z ei*"

The

(5.17.1)

for i,i _ = 1,2,...,n. Our estimator of _ is found by substituting

^ ^ ^

these estimators into E, giving us E, and then taking _ = Z QI.

^

Using _ we will have the following expression for the estimator of

the vector e**:

^

^ T^-I -i T^-I
a** = (D^n D^) (D^_ y**). (5.17)

Z Z Z

From Section 5.4 we note that we will take _ = E OI where

E = {cil.;i,i" = 1,2,...,n} is a positive definite matrix.

estimators of aii. are given by

^ AT ^

011 . = ei,el.,/(n+l)M,
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For the regression model specified by equation (5.10),which

we have designated as Case II, we will need to define the following

new set of vectors and matrices:

. .T .T .T,T .T

y** = _yl,,y2, ,. ..,yn,) , where Yi* = (Yio'Yil '"" "'Yi, (n+2)M-i) ;

, .T .T .T,T .T
_** _l,,_2,,...,_n,) , where _i* = (_io'_il'''''_in);

, .T .T .T.T .T

e** = lel,,e2,,...,en,) , where ei, = (eio,Eil,...,ai,(n+2)M+l);

and

_

'i I i ... i \

-X 1 -I 2 -X n
I e e ... e

-2X I -2X 2 -2X n
i e e ... e

_i e-[(n+2)M-l]hXl e-[(n+2)M-l]hX2 ... e-[(n+2)M-l]hln

From the above definitions we can now write the complete set of

equations given by (5.10) as follows:

y** = Dz.a** + e** (5.lS)

where D z. is an [n(n+2)M x n(n+l)] matrix with Z" matrices along

its diagonal, i.e.

De _ "_ Izz0ilZ_oee

ee•
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where O's have the same meaning as given for Case I.

Using a similar type of reasoning as was applied in

Case I, we find an estimator of the vector _, of linear

parameters to be given by the following expression:

^

_, = (D_ _'-ID^ )-I(D_ _.-ly_,),
Z_ Z" Z _

where the -'s have the same meaning here as they had in Case I.

(5.19)

5.4 Some properties of the generalized

partial totals estimators

During the development of the generalized estimation

procedure presented in Section 5.3, the only assumption that we

used concerning the random variables E.. was the assumption that
13

E(_ij) = 0 for all i and j. However, before we can investigate

some of the properties of these estimators we must make some more

specific assumptions about the random variables eij. These

assumptions may be stated as follows:

i) For each value of i and j we have E(Eij) = 0 and

2

E(eij) = o..iiwhere 0 < o..11< _"

2) For each value of i,i',j, and j" with i # i" and j # j" we

have E(eijeij.) = E(Eijei.j_) = 0 and E(eijei. j) = oii. where

-_ < Oil. < =.

At this point we will prove the Theorem 5.1 given below,

in order to demonstrate the consistency of the estimators of the

exponential parameters for Case I. After proving this theorem
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we will indicate the minor changes to be made in the proof in

order to demonstrate the consistency of the estimators for the

exponential parameters for Case II.

^ ^ ^

Theorem 5.1: Let %1,%2,...,_n be the generalized partial totals

estimators of the parameters %1,%2,...,% n in the regression model

given by (5.9), which we have designated as Case I. These

estimators of the exponential parameters are consistent estimators

under the following assumptions:

i) For each value of i = 1,2,...,n, the random variables ¢ij'

j = O,l,...,(n+l)M-l, are uncorrelated with E(aij) = O.

2) For each value of i and q the random variables c.. associated
ij

with the corresponding observations Yij in Siq as given in

Section 5.3 have constant variance.

3) For each value of i and q the domain of the independent

variable is of constant length J for S. where i = 1,2,...,n
lq

and q = 1,2,...,n+l.

4) For the linear coefficients _ik' let _ be the n × n matrix

th
of these coefficients, where =ik is the element in the i row

and k th column for i, k = 1,2,...,n, and assume that the

determinant of _, I_I, is unequal to zero.

Proof: From the substitution of the Siq for the Eiq in the set of

equations displayed in (5.12), we note that the estimators L of
r

the A r = 1,2,...,n, are found by Cramer's rule as the ratio
r _

of the following two determinants:



70

Lr = IPrl/IP I , r = 1,2,...,n, (5.20a)

where P is an n × n matrix whose (i,q) th element is (-l)q-Isiq

for i, q = 1,2,...,n. The n x n matrix P is the sameas P exceptr
that the elements in the (n-r+l) th column are replaced by the

elements (-l)n-lsi,n+l . Nowsince each Siq is the sum of M

observations, we may replace each Siq by Siq , where Siq = Siq/M,

and still have the sameestimators for L . Therefore letr

Lr IRrl/IRI , r 1,2,..,n, (5.20b)

where R and R are respectively the sameas P and P except withr r

the Siq'S substituted for the Siq'S. Next let us write Siq as

follows:

-- I qM-i i qM-i n -lkhJ i qM-i
= -- E = -- E E _ik e + -- E •

Slq M J=(q-l)M Yij M j=(q-l)M k=l M j=(q-l)M _lj

(5.21a)

We will allow M-_. However, as stated in the third assumption of

our theorem, we will specify that the M observations included in

th
the q partial total for a particular equation are made for the

values of j given by

(q-l)J,(q-l)J + J/M,(q-l)J + 2J/M,...,J/M(qM-I).

Therefore, with this specification, equation (5.21a) may be

written as

1 qM-i n -lk Jj/M

=- E E _ik e
Siq M j=(q-l)M k=l

i qM-i
-- E £ ..

+ M j=(q-l)M i3

(5.21b)
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From the first and second assumptions of our theorem, the last term

in (5.21b) is the meanof M uncorrelated randomvariables each with

the samevariance. By an application of the Tchebycheff theorem

given in Cramer ([1946], page 253), this term will converge in

probability to E(eij ) = 0.

lim i qM-i n -lkJJ/M i
-- E E _ik e J/M =

M-->_J j=(q-l)M k=l

n qJ -_kx
Z f _ik e dx

k=l (q-l) J

I n Sik -%k (q-l)J -%k J

=-- _ _--eJ k i (l-e ).
(5.22)

From Slutsky's theorem (see Cramer [1946], page 255) we now have

that _. converges in probability to the above constant, which will
lq

be denoted by _iq' i.e.

-- -> I n elk -Ik (q-l)J -Ik J

= _ (1-e )SiqP 7
-->

as M ->_ where p denotes convergence in probability.

Now in order to complete the demonstration

(5.23a)

^ _>

of %k p lk

as M-->_ for k = 1,2,...,n, we will need to go through an argument

similar to the one given by Cornell [1956] for one regression

equation. From equation (5.20b) we note that the estimators L
r

are merely ratios of sums of products of the Siq. Therefore

..IRrland IRI are continuous functions of the Siq , and Lr will be

continuous at the point _**, where _** is defined as that point

where S--iq= _lq for all i and q, provided IRI # 0 at _**. We
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maywrite _lq as follows:

n -Xk(q-l)J
= E uike_iq k=l

(5.23b)

-XkJ
=ik (l-e ) for i, k = 1,2.... ,n and q = 1,2,...,n+l.

where Uik - jXk

For all i and k we note that Uik # 0. Nowat the point _** the

(i,q) th element of R is given by (5.23b) and therefore at this

point R may be written as the following product:

UW _

i! -XIJ -%l(n-l)J

Ull u12 ... Uln\ 1 e ... e

-X2J -X 2 (n-l) J

u21 u22 .. U2n i e. ... e

: " uJ" "-X J "-Xn(n-l)Jn

Unl Un2 nn! e ... e

I .

(5.24)

The matrix W is a Vandermonde matrix (see Hohn [1964], page 70)

and therefore IWI =

n

that iUi : lul
k=l

-XkJ -Xk.J
(e - e ). Moreover, it can be shown

k>k"

-XkJ
(l-e )

_kJ . From the fourth assumption of our

theorem we note that IRI at the point _** is unequal to zero,

which implies that L , r = 1,2,...,n, is continuous in a
r

neighborhood of _**. Now since Wl,W2,...,Wn are the n roots of

th
an n degree polynomial with coefficients Lr, then Wl,W2,...,w n

will be continuous in a neighborhood of V** since the roots of a

polynomial are continuous functions of the coefficients.

estimators Xk are continuous functions of the roots Wk,

k = 1,2,...,n. Therefore we have that the estimators of

Now the
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Xk, k = 1,2,...,n, are continuous in a neighborhood of ?**.

Nowthat we have demonstrated that the estimators
^

Xk, k = 1,2,...,n, are continuous in a neighborhood of _**, we

may apply a result proved by Slutsky (see Sverdrup [1952], page 6)

^

to conclude that if Xkl - = Xk, then Xk converges in

S. =_.
mq lq

probability to Ik with Siq = _iq for all i and q. So in order to
^

complete the demonstration that the Xk, k = 1,2,...,n, are
^

consistent we must show that Xk = Xk at the point _** for

= (Siq)k = 1,2,...,n. Let _iq E . Then from equations (5.21b)

and (5.22) we note that _iq _ _iq as M-_. From equation (5.12)

= A r = 1,2, ,n, at the point Siq = _iqwe can see that L r r' "'"

for all i and q. This implies that the roots of the polynomial

equation

n wn-i n-2
w - A! + A2w -'''+ (-l)nAn = 0 (5.25)

would be e-XkhM = e-XkJ, k = 1,2,...,n. Therefore we have that

^

Xk = Xk at the point Siq = _iq
for all i and q. Using the above

conclusions we have

-- M-_ -

Siq=Tiq Siq=_iq

where Siq _iq and Siq _iq are to hold for all i and q. Hence
^

^

Xk converges in probability to Xk for k = 1,2,...,n, and Xk is by

definition a consistent estimator of Xk. This completes the proof
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of Theorem5.1.

For the regression model designated as Case II by equation

(5.10) we have the following theorem:
^ ^ ^

Theorem 5.2: Let %1,%2,...,%n be the generalized partial totals

estimators of the parameters _i,%2,...,I n in the regression model

given by (5.10), which we have designated as Case II. These

estimators of the exponential parameters are consistent estimators

under the following assumptions:

I) For each value of i = 1,2,...,n, the random variables cij,

J = 0,1,2,...,(n+2)M-l, are uncorrelated with E(_ij) = O.

2) For each value of i and q the random variables cij associated

with the corresponding observations Yij in Siq , as given in

Section 5.3, have constant variance.

S) For each value of i and q, the domain of the independent

variable is of constant length J for Siq where i = 1,2,...,n and

q = 1,2,...,n+2.

4) For the linear coefficients =ik' i, k = 1,2,...,n, let _ be

the n x n matrix of these coefficients, where _ik is the element

in the ith kthrow and column, and assume that the determinant

of _, I_I, is unequal to zero.

Since the proof of this theorem will be similar to the

proof of Theorem 5.2, we will merely indicate those points where

changes need to be made. In order to show that the estimators

of the exponential parameters for Case II are also consistent,

we will need the following expression:
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-- + i n aik -%k(q-l)J -%kJ)2 _ (5.27)
IM S'lq = S:lq p _ kE=I _-k e (l-e = _iq

for i = 1,2,...,n and q = 1,2,...,n+l as M->_. With this expression

we will need to show that IR'I, i.e. the determinant of R with its

elements Siq replaced by S_q, is unequal to zero at the point _**.

p

At the point _** the determinant of R" may be written as the

product IU'IIWI where the matrix W is the same as was defined in

the proof of Theorem 5.1 and

n (l_e-_kJ)2
Iu'1= H . (52s)

k=l %k J

Therefore using the assumptions of our theorem and going through

the same continuity argument that was used for Case I, we conclude

that the estimators of the e_ponential parameters for Case II are

also consistent.

Before we demonstrate the consistency of the estimators of

the linear parameters for Cases I and II, we will need to prove

the following lemma.

^ ^ ,_n)TLemma 5.3: Let a = (al,... be a vector of consistent

estimators of the elements of the vector a = (al,a2,...,an)T.

^

Let b = G(a) be a jointly continuous function of the elements of
^ ^

^ ^
^ _

the vector a, such that b - b p 0. Then b - b p 0 and b is a
^

^

consistent estimator of b, where b is equal to the function

^

G(a), i.e. G(a) with a substituted in the place of a.

^

Proof: Since a is a vector of consistent estimators of a, then we
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^

know that ak - ak p 0 for k = 1,2,...,n. Since G(a) is jointly

continuous in the elements of a, we may apply the results proved

^ __

by Pratt([1959],pages 551,552) to conclude that G(a) - G(a) p 0.

^

From our hypothesis we also have that b - b = G(a) - b p 0,

therefore

^

b - b = G( ) - G(a) + G(a) - b p 0

since both portions of the sum tend in probability to zero.

is a consistent estimator of b.

If the exponential parameters of our regression model are

known and the random variables E.. are assumed to be normally
13

distributed, then the estimators of the linear parameters given

by equation (5.16) and the corresponding equation for Case II are

maximum likelihood estimators of these parameters. The conditions

given by Cram_r ([1946], page 500) are satisfied by the normal

density function and therefore the asymptotic properties of

maximum likelihood estimators demonstrated by Cram_r hold for this

case. In particular, the maximum likelihood estimators converge

in probability to the true values of the parameters when the

conditions are satisfied. Hence by the use of Lemma 5.3 along

with Theorems 5.1 and 5.2 we may prove the following theorem:

Theorem 5.4: Let the following assumptions be satisfied:

l)

2)

3)

The assumptions of Theorem 5.1 (or 5.2) are satisfied.

The random variables E.. are normally distributed.
13 ^

^ ^

The elements of the vector a,_ (or a**) in equation (5.16)

^

^

Hence b
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(or (5.19)) are continuous functions.

Then the estimators of the linear parameters given by equation

(5.16) (or(5.19)) are consistent estimators of the linear

parameters in our regression model.

Nowthat we have established the consistency of our

generalized partial totals estimators, we will investigate the

limiting distribution of the exponential estimators and then we

will derive an expression for the asymptotic efficiency of these

estimators. Before presenting the detailed discussion of this

distribution theory, we will introduce somenotation that will be

used in the development given below. Whenwe have two arbitrary

vectors a = (al,a2,...,an)T and b = (bl,b2,...,bn)T, then by

we meanthe vector (lall,laml,...,lanl) T, by a < b we meanlal

llm a
ai< bi for all i, by N-_ we meanthe vector

lim aI lima 2 lim an_T
N-_= 'N_ '''''N-_= / . Since the following results will

hold for both Cases I and II with obvious modifications, the

details of the derivations will be presented only for Case I with

merely the conclusions for Case II being shown.

^

Theorem 5.5: Let % represent the n x 1 vector of generalized

partial totals estimators for the exponential parameters given

^

by equation (5.91, where each _k' k = 1,2,...,n, is a function

A

of the Siq, i = 1,2,...,n and q = 1,2,...,n+l. If each %k

possesses continuous second order derivatives of every kind with

respect to the Siq in the neighborhood ISiq-_iq I _ 6 for 6 > 0
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where i = 1,2,...,n and q = 1,2,...,n+l, and, in addition, if the

distributional assumptions concerning the randomvariables e..z3

stated at the beginning of Section 5.4 and Theorem5.1 are

satisfied, then the limiting distribution of /M(_-%,), where %,

^

represents the vector % with the Siq replaced by the _iq for all
^

i and q in each of the elements %k' is a multivariate normal

distribution with mean vector given by the zero vector and

-- --T
covariance matrix given by: F_F T where _ = _(e,.e,.),

M-I
-- i

e,. =_ F
J=o

e,j, e,j = (elj,el,j+M,...,el,j+nM, e2j,...,

.... e )T
e2,j+nM' "''enj' ' n,j+nM , and

F

^

n

B_ll I_
S**=_**

A211

_Sn, n+l I_**=_

n I
_S --

n,n+l S**=_** (5.29)

Proof: By a consideration of the vectors e,j defined above for

j = 0,1,...,M-I and from the distributional assumptions that we

have made about the random variables e.. for i = 1,2,...,n
13

and j = O,l,...,(n+l)M-l, we note that the vectors e,j are

independent and identically distributed with zero mean vector and

covariance matrix E(e,je_j.) = ZQI for all j, j" = 0,1,...,M-I
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where Z = {cij; i = 1,2,...,n, j = 1,2,,..,n}, I is an (n+l)x(n+l)

identity matrix, and Q represents the Kronecker or direct product

of two square matrices.
M-I-- 1

Let _,. = _ .E _,j. Then by an
3=0

application of a form of the multivariate central limit theorem

(see Anderson [1958], page 74), we conclude that _,. has a

limiting multivariate normal distribution with zero mean vector

and Z QI as covariance matrix.

Next let us define the vectors

....... r

S** = (SII,...,SI,n+I,S21,...,S2,n+I,...,Snl,...,Sn,n+I) ;

_** = E(S**); and

T

_** = ($ii' .... '_l,n+l'$21''"'$2,n+l'''''$nl'''"_n,n+l ) " Now

SL, _ $** as M-_=, as we demonstrated in the proof of Theorem 5.1.

From the definition of our regression model and the above

definitions we have:

= + •

lim _(_, __,_) = 0, which would imply fromWe want to show that M-_

the limiting distribution theorem given in Cram_r ([1946], page

254) that the limiting distribution of 4_(_**-_**) is the same as

the limiting distribution of _ E,., namely, a multivariate normal

distribution with mean vector zero and covariance matrix E QI.

From the definitions of _iq and _iq given above and in the

proof of Theorem 5.1, we have
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i _ikj
n 1 -Ik(q-l)J (l-e )

_(_iq-_iq) = _ Z _aike

k=l (l_e-_kJ/M)

n -%k(q-l)J

r _ik e
k=l

Jlaik%ke-_k(q-l)J(l-e-lkJ) ]

(l_e-_kJ) [ Jkk-M(l-e-_kJ/_I ) ]

jXk(l_ e kkJ/M)M

-_ J

n -%k(q-l)J -AkJ F J%k-M(l-e k /M) ]

" k:IZaike (l-e )L__M + 0

(5.30a)

as M-_=, since by several applications of L'HBpital's rule

-IkJ/M

lim Jlk-M(l-e )

M+_ jlk (l_e-lkJ/M)/_

=0. (5.30b)

lim _(_**__**) = 0 and _(S**-_**) has a limitingHence M-_

multivariate normal distribution with mean vector zero and

covariance matrix E QI. Now let Z** = M(S**-_**) and expand

^

each member of k in a Taylor's series about the point S** = _**,

giving us
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/
+ (2M) -I _ 7

\
i,q,i',q

ZiqZi" q"

_SiqSS'z q""

_2_ T

Z Ziq n 1 _!l > (5.31)

i,q,i',q" Zi'q" _Siq_Si.q. S**=_**+ M 2WnZ, *

where lWkl_<I for k = 1,2,...,n. Now let E represent the event

that IS**-_**I <__6 is true for arbitrary 6 > 0; E the negation

of E; and ElSE 2 the intersection of E 1 and E2. Then

P{_(l-l,)_<x} = P{(_(I-I,)<__x)DE} + P{(/M(I-I,)<_x)NE}.(5.32a)

For any event E1 we note that

- 2 M62)P(EInE) < P(E) < I P(Z > (5.33a)
i,q

where the last inequality follows from the definition of E. From

a form of Tchebycheff's theorem (see Cram_r [1946], page 182) we

have:

E(Z_q)
Z P(Z_ >M62) < E

i,q lq-- -- i,q M62

-- 2

Z {Var(Siq) (_iq-_iq)162 + _2 "
i,q

(5.33b)
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Since Siq is the meanof M independent randomvariables each with

the samevariance o__,iithen Var(S--q)i - °iiM---_ 0 as M-_. Likewise

we know from the proof of Theorem 5.1 that _iq ÷ _iq as M-_.

Hence

E _Var(Siq) (_iq-Wiq)2-_+ 7 " o(i) or P(EINE) = o(i)+0 (5.33c)

as M-_= from the definition of o(i) (see Cram_r [1946], page 122).

Therefore

P(_C_-l,)_<x} = P{(_C_-I,)<__x)ME) + o(i). (5.32b)

From the hypothesis of our theorem, we are assuming that the

^

functions %k possess continuous second order derivatives of every

kind in the neighborhood IS**-_**I _ 6. Therefore we may also

conclude that these derivatives are bounded, i.e. there exists a

constant C such that

_Siq_Si-q -

< C (5.34)

for all i, q, i', q', and k. Hence for each k we have
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i 32_k

E M 2ZiqZi. q. 3Siq_Si'qi,q,i',q"

__I 2

_<M 2C( Y IZiql ) •

i,q

(5.35)

From equation (5.35) we may now write:

i,q 9

(5.36)

where I is an n x I vector with each element equal to one. From

equation (5.32b) we may write

P FZ**+ r [Ziq[)21 <x + o(1)
2_ i,q -- 3

< P{_(x-x,)<_x}_<

P{[ (FZ**-2--_M (E [Ziq[)21)_<x]NE_ + o(i) •
i,q

(5.37)

We have already found the limiting distribution of Z**, and we want

to show that _ ( E [Ziq[)21 _ 0 as M-_. Consider
2_ i,q
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( _. (IZiql) 2) _i

(J_iq_Vl q E } E{( r (j_ -V l)2)}_= P ( Z j)2)>--_ < i,q iq lq
i,q _ e

, (5.33)

where the last inequality holds from Tchebycheff's theorem. Next

consider

_ME(Siq-_iq) 2 : /M Var S--iq+ /M(_iq-_iq) 2

= 11//_ + /_(_iq__iq ) (_iq__iq) -_ 0 (5.39)

as M_ by using equation (5.30a). Then consider the term

I IIZi,q. I = -- [ISi "q "-_i "q"_IZiq _ISiq-_iq I

i 1

= M4 1S--iq-_iq IM4 ISi'q'-_i'q" I (5.4o)

for i # i" and q # q'. By an argument similar to the one used in

the proof of Theorem 5.1 to show that Siq-_iq p 0, we can show that
i

M4(_iq__lq) +p 0. Therefore the expression in equation (5.40) tends

in probability to zero as M_. Substituting these results back

into equation (5.38) we conclude that --_-C ( E IZiql)21 tends in
2/M i,q

probability to zero as M_. Therefore the limiting distribution of

^

_(X-X,)__ is the same as that of FZ**, i.e. a multivariate normal

distribution with mean vector zero and covariance matrix
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F(EGI)F T = F_FT. This completes the proof of Theorem5.5.

For the regression model designated as Case II we can use

a similar proof in order to prove the following theorem:
^

Theorem 5.6: Let X" represent the n × i vector of generalized

partial totals estimators for the exponential parameters given in

^

equation (5.10), where each X_, k = 1,2,...,n, is a function
^

of the St , i = 1,2,...,n and q = 1,2,...,n+l. If each Xkq

possesses continuous second order derivatives of every kind in

the neighborhood IS;q-_iql _ _ for 6 > 0 where i = 1,2,...,n

and q = 1,2,...,n+l, and if the distributional assumptions

concerning the random variables Eij stated at the beginning of

Section 5.4 and Theorem 5.1 are satisfied, then the limiting

A
^

distribution of /M(X'-X_), where X, represents the vector I"

with the S." replaced by the _." for all i and q in each of the
lq lq

^

elements Xk, is a multivariate normal distribution with mean

vector given by the zero vector and covariance matrix given by
M-I

F'_'F "T, where fl" = E(E_.e_.T),_,. = _ E

= ( ij'q,j+M' "" "q,J M' " T"

cij = cij - E° andl,j+M'

F_

^

e.o

_!il S**=lt"** _ S"-', n+l

^ .,.

I_ (5.41)
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We now propose to obtain an expression for the asymptotic

efficiency of the generalized partial totals estimators of the

exponential parameters in our regression models for various

distributions of the random variables g... Since the procedure
m3

for both Cases I and II are similar, we will present the details

only for Case I and quote the results for Case II. Using some

of the ideas presented by Kendall and Stuart ([1961], Vol. II,

pages 55ff) concerning generalized variances, we will take as our

measure of the asymptotic efficiency of our estimators the

following ratio:

lim _ _InL _ (_inL _T _-I= M-+,,o [E \-_--/\ ax / l l Ij (5.42)

where L represents the likelihood function whose form will be

specified and _ represents the asymptotic covariance matrix of

_inL ) _inL_ Tour estimators. Therefore the matrix E _ _--_--/

will be an n × n matrix with the (k,k') th element given by

E(alnL)(_inL_ for k, k" = 1,2 ...,n.
Kendall and Stuart

_X k \a_k./

demonstrate that v is always less than or equal to one when we

are considering consistent estimators of the elements of the

vector X, and that 9 = 1 for maximum likelihood estimators.

First let us consider for Case I the situation when the

distribution of the vectors Y,j = (YIj,Y2j,...,Ynj) T,Soint

j = O,l,.,.,(n+l)_l, is given by:
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L _.

(n+l)M-i

j=o

i lexp(l )T )
(2_)n/21E l /2 -_(Y,j-E (Y,j) E-I (Y,j-E (Y,j))

(5.43)

where Z = E (Y,j-E (Y,j)) (Y,j-E (Y,j) )T and

E(Y,j) =

n -IkXj

/ k=El_ik e \

n - kXj

kr__la2k e

n " -X.x._

(5.44)

[_lnL7 _InL)TBefore evaluating the expression E_ _1 / _ _I we observe that

_n/2 _ (n+l)M-iinL = in2_ inlll __i E

2 j--o

and we need

(Y,j'E (Y,j) ) TE-1 (Y,j-E (Y,j) )

_inL
__ : __i_12(n+l)M-iE --{_I (Y,j-E(Y,j)TE-I(y,j-E(Y,j)) }

J:o

-i
It can be shown from basic matrix theory that since E is

symmetric that

_inL (n+l)M-I
- E

j=o
Dj E-1 (Y,j-E (Y,j) )

th DE (YiJ)

where the typical (k,i) element of D. is given by
3 _kk
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From the above results we maynow write the following:

(_inL _ ( _inL_ T (n+l)M-i -i=-. Z D.E
(Y,j -E (Y,j) )

(n+l)M-i -i
Z D.Z

j=o J
(Y,j -E (Y,j) )

(n+l) M- I

Z

j=o
D.j E -1 (Y,j -E (Y,j) ) (Y, j -E (Y, j ) ) TZ-1DTj

+
(n+l)M-i -i

E D.Z

J ;j <=o J

j_j-

(Y,j -E (Y,j) ) (Y,j .-E (Y,j.) ) TZ-1DT3 ..

From the previous assumptions given at the beginning of Section

5.4 concerning the random variables eij, we know that

E (Y,j-E (Y,j) ) (Y,j .-E (Y,j .) )T = Z

=0

if j = j"

if j #j"

Therefore

(_InL_(_InL)T_ j\ _A (n+I)M-I -i Tm __ _--r = Z D.Z D.

j=o 3 3

(5.45)

and from Theorem 5.5 we may now write

!(n+l)M-i
lim r

M-_ j =o

(5.46a)
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Going through similar steps we can determine the following

expression for the asymptotic efficiency of the estimators of the

exponential parameters for Case II:

_ M-_ j=o _ F_a'F_T (5.46b)

where D_ is the sameas D. whenwe use the regression model given3

by equation (5.10) instead of (5.9) and F'_'F "T is given in

Theorem 5.6.

In Chapter 7 where a comparison of the various estimation

techniques discussed in this research will be made, the expression

for _ will be evaluated for various values of n and various values

of the parameters in our regression model.

5.5 Extensions and modifications to the

generalized partial totals estimation

procedure

5,5.1 Multip_etobservations at each

value of the independent variable

During the discussion in the earlier sections of this

chapter concerning the generalized partial totals estimation

procedure we have assumed that only one observation was taken

for each value of the independent variable. In this section

we want to allow for multiple observations to be taken at each

value of the independent variable on each regression equation,

and we will determine the changes that arise in our generalized

estimation procedure. Corresponding to Cases I and II given
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earlier we have the following new cases:

n -XkXj
Case I*: Yij'3 k=IE_ike + E...133

for i = 1,2,...,n; j = O,l,...,(n+l)M-l; and j = 1,2,...,M i, where

the observable randomvariable Yijj

by Yijj"

takes on the values denoted

n -%kXj
Case II*: Y = _. + Z _ike + _ ..ijj 1o k=l iJ3

for i = 1,2,...,n; j = O,l,2,...,(n+2)M-l; and j = 1,2,...,M i,

where the observable random variable Y... takes on the values
133

denoted by YijJ"

For Case I* we form the new partial totals S¢
lq

M.
qM-i _!i

-- i Z Z

S_q- DN i j=(q-l)M j=l Yijj

defined by

where i = 1,2,...,n and q = 1,2,...,n+l. For the estimation of

the exponential parameters of our regression model, we will use

exactly the same method as we presented in Section 5.3 with the

S_q substituted in the place of the Siq. For Case II* we form the

new partial totals S_ defined by

:sIq-s ,q÷1 ,
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where i = 1,2,...,n and q = 1,2,...,n+l. For the estimation of

the exponential parameters in this case, we will use exactly the

same method as we presented for Case II in Section 5.3 with the

S_ substituted in the place of the S_q.

In order to estimate the linear parameters for our new

cases we will proceed just as we did in Section 5.3 for the

estimation of the linear parameters in Cases I and II, with

M i

-- I -- replacing the of this earlier section.

In order to conclude anything about the asymptotic properties of

these generalized partial totals estimators for these new cases,

we need to rephrase our assumptions concerning the random

variables cij j as follows:

i) For each value of i, j, and j we have E(eij j) = 0 and

E 2 ) _ii where 0 < aii

2) For each value of i, i', j, j', j, and j" with i # i" and

J # j', we have E(Eijjeij.j.) = 0 and E(eijjEi.jj.) = °li"

where - = < o... < =.
ii

3) For each value of i = 1,2,...,n we assume that Mi = m.M1_where

n

0 < m. < 1 and E m i = i.i
i=l--

4) The second derivatives of every kind of the estimators of the

exponential parameters with respect to the new partial sums

S@ or S@" are continuous.
lq lq
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With the above assumptions, we may use the samemethod of

proof as we used in Theorems5.1 and 5.2, with the S_q'S

and S@"s replacing the S. 's and S_ 's, respectively, to
lq lq zq

conclude that the estimators of the exponential parameters are

consistent _s M-_ or M-_o. In addition, wemay follow a similar

procedure to that used by Cornell [1956] and that used in the

proof of Theorem5.5 (or Theorem5.6) with the S@'s (or S@"s)lq lq
^

replacing the --Siq'S (or S_q'S) to demonstrate that /_(I*-_)

<or __(_*'-l_')) has a limiting multivariate normal distribution

^ ^

as M-_ or M-_, where _* and l_ (or _*" and l_ 0 have similar

^ ^

definitions to I and l,(or l'and _) given in Theorem 5.5 (or

Theorem 5.6).

5.5.2 Some justification for the

grouping of our partial totals and

some modifications for unequally

spaced values of x_
J

During the development and evaluation of our generalized

partial totals estimation procedure, no reason was given for the

particular grouping of our observations in order to find the

partial totals of Siq, which, in turn, would give us our

estimators of the exponential parameters. In this discussion

we will demonstrate that some other forms of grouping our

observations do not lead to estimators with the desirable

properties that our estimators have. Most of the results

presented here follow directly from the work by Cornell [1956],
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but will be presented here for completeness• Also, although the

following results maybe obviously extended to Cases II, I*, and

II*, we will give the results only for Case I.

Onepossible alternative to the grouping of our

observations would be to divide the range of our independent

variable into M equal portions, taking the first observation of

each segment to go into the first partial total, taking the second

observation of each segment to go into the second partial total,

etc. Our new partial totals would then be written as:

M-1

SA. = E Yi,j(n+l)+q-i
lq j=o

for i = 1,2,...,n and q = 1,2,...,n+l.

(5.11) we have

M-I n -%kh(j(n+l)+q-l)

EA = E E _ik e
iq j=o k=l

Corresponding to equation

-%k h (n+l)M
n -_k h (q-l) (l-e )

E _ik e -%k h (n+l)
k=l (l-e )

Going through the same basic steps that we used in Sections 5.2

and 5.3, we arrive at the following equation corresponding to

equation (5.12):

A A A A A A n+l A A
AnEi I _An_iEi 2 + An_2Ei3_...+(-l) AoEi,n+ I = 0

for i = 1,2, ..,n, where AA• r' r = 1,2,...,n, are the elementary
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-Xkh
symmetric functions of e . In addition, we define AA = i.o

By substituting the S_ 's in the place of the E_lq lq'S, it follows

that the solutions for the exponential parameters maybe easily

obtained in a similar manner to that used in Section 5.3.

In order to investigate someof the properties of these

estimators we will make the sameassumptions concerning the

randomvariables e.. as stated at the beginning of Section 5.4.
13

Next let us consider:

_A 1 SA i
lq M lq M

M-I n -%kh(J (n+l)+q-l) I M I

j=o k=l j=o i,j(n+l)+q-i

M-I

1 EA +i
=_ lq _ Z e.

j=o l,j (n+l)+q-i

By the same reasoning as we used in the proof of Theorem 5.1, we
!

M-I
i ÷

can show that _ .l ei,_j(n+l)+q-i p 0 as M+_.
3=0

By using the same

assumptions as given in Theorem 5.1 we can show that

llm i n M-I -%kJ(n+l)J/M -lkJ(q-l)/M<J/M_
M__o _ l I _ik e e

k=l j=o

i n _e-_k(n+l) t _A
=--J k--Eleik o dt = iq'

which is independent of q. Hence S_q +p _iq'A and by using the
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sameline of reasoning as presented by Cornell [1956] we conclude

that the matrix RA evaluated at the point S_q = _lq will be

singular, and therefore our estimators of the exponential

÷
parameters will p _ as _+_. That is, these estimators will not

be consistent.

Another alternative method of grouping could be applied

when M is a multiple of (n+l), in which case we could divide our

M
domain into (n+l) 2 equal groups each containing_'_observations.

Then in the place of E.

EA
lq

we will use
lq

qn+IM 1 (q+n+l)n+_l (q+n(n+l)+l)n_l

= :l E(Yij ) + l E(Yij)+...+ E E(Yij)

M = (q+n (n+l))n--_lj= (q-l) M j= (q+n) n--_ J

where i = 1,2,...,n; q = 1,2,...,n+l; and the superscript A

indicates an alternative grouping. With this alternative grouping

we can show that the new partial totals satisfy the system of

equations given by (5.12) with the Z_ substituted for the Ziq.
lq

We may now use this new system of equations to solve for the

\

elementary symmetric functions of e ,..., e . In

order to find our estimators of these elementary symmetric

functions we will use the partial totals S_q_ in place
EAof
lq

where
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nq_+l1M (q+n+l) n_ 1

_Aq _ n+l { M y +M _" E Yij

j= (q-l) n--_l ij j--(q+n)n+-

(q+n (n+l)+l)n_l

+'" "+ _ YlJ } "
M

j= f

From the results given in Section 5.4 and the results derived by

Cornell [1956] we can show for this alternative grouping that the

determinant of the matrix RA, which is the same as the matrix R in

--A -- --A A

Section 5.4 with S_q__ used in place of Siq, evaluated at S_q =

is equal to zero, where S_q ÷p _iq'A Hence we see that there are

alternative groupings for the partial totals which lead to an

estimation procedure similar to that developed in Section 5.3, but

these alternative groupings do not have some of the desirable

properties of the generalized procedure presented in Section 5.3.

We now want to propose some modifications that will be

noncerned with the assumption about the values of x. in equations
3

(5.9_ and (5..10)being equally spaced, and with the assumption

about an equal nnmber of values, of xj being take_ for each..partlal

total Siq. For the particular situations arising when these

assumptions are not satisfied, we may think of the Eiq'S as

approximations to areas under the curve found by plottlng-

E(Yi(x)) against the independent variable x. With this

interpretation in mind, we will suggest the following

modifications to the generalized partial totals estimation

procedure when some of our observations do not satisfy all of

the.basic assumptions:
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l) Divide the domain of the independent variable into the desired

number of intervals, each interval being of the samelength.

2) Add the observations in each of these new intervals together,

weighting each observation Yij by the following:

Xj+l-X j xj-xj_ I Xj+l-Xj-i
+ =

2 2 2

3) Divide these new partial totals by the sumof the weights, and

substitute these weighted averages in the place of the Siq'S which

appeared in Section 5.3.

In order for the limiting properties of the estimators to

still hold, we must continue to assumethat the domain of the

independent variable for each partial total is constant, and the

number of observations for each partial total becomeslarge.

The above modifications are useful for the estimation of the

exponential parameters. The estimation of the linear parameters,

given the exponential estimates, would remain unchanged.



VI. A GENERALIZATION OF SPEARMAN ESTIMATION

6.1 Introduction

In this chapter we will develop and discuss some of the

properties of an estimation procedure that may be applied to the

estimation of the exponential parameters of a member of the class of

regression models given by equation (i.i). This estimation

procedure will be based upon a generalization of the Spearman

estimation technique as presented by Johnson and Brc_m [1961].

Therefore in Section 6.2 we will present the estimation technique

for the case when n = m = i in equation (i.i), which is the case

considered by Johnson and Brown. It is given here for completeness.

In Section 6.3 the generalization to this estimation procedure will

be presented, and finally in Section 6.4 certain properties of these

estimators will be presented. Since the particular regression

models that we will be considering are motivated by the equations

that arise in describing tracer experiments, there will be certain

restrictions placed upon the linear coefficients of our model, e.g.

the sum of these coefficients must be equal to a constant. As the

various steps of the estimation procedure are presented we will

specify these restrictions.

98
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6.2 Single equation Spearmanestimation

The results in this section are contained in the work by

Johnson and Brown [1961] and Cornell [1965]. However, we will

repeat someof the results here since someof them will be needed

for the generalized estimation procedure to be presented in the next

section. The particular regression model that we are considering

now is given by:

Yj = 1 - e-_XJ + e.3 "

It is possible to think of this as one of the regression equations

arising from a two-compartment mammillary or catenary system where

the observations represent the proportion of radioactive tracer

present in a compartment at a particular time, as Section 3,1

demonstrates. Since the sum of the expected values of the observed

random variables will be fixed for this case, there is only one

independent regression equation which is given by (6,]a). We will

drop the subscript i as we did in some of the earlier chapters,

since for this discussion i = 1 only. In the last chapter we

assumed that the values of the independent variable were taken such

that xj+ 1 - xj = h for all j where h > 0 and h is independent of J.

Since we are assuming that the expected values of the observed

random variables are following an exponential function, it would

appear more reasonable in fitting our observations to a particular

function to take most of our observations in that region of the

independent variable where our function is changing the most.

(6.1a)
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Hence in this chapter we will take our independent variable to be of

zj ±1,±2. ± M"= e where z. = z + jd for j = O, , ..,the form xj 3 o

when the number of observations is odd, and zj = z + d(j + _) forO

j = 0, ± i, + 2,..., ± (M" - i), - M" when the number of

observations is even, i.e. the values of z. are taken to be equally
3

spaced. Hence our regression model becomes

zj
Yj = 1 - exp (-ke ) + cj,

(6.1b)

for J = 0, ± i, ± 2,..., ± (M'-l), and ± M" or - M" depending upon

whether an odd or even number of observations has been taken. When

we want to consider the expected value of the observed random

variable as a continuous function of the independent variable_ we

will denote this by E(Y(z)) - 1 - exp (-le z) where - _ < z < _.

This last statement implies that we are assuming that E(cj) _ 0 for

all J, where _. appears in equation (6.1b).
3

The first step in this estimation procedure will be to

evaluate the following integral:

p(1) = fzdE(Y(z) ) = fzXe z exp (-Xe z) dz = - y - inl (6,2)

where y is Euler's constant.

find

X = e-Y e-_(I).

Solving the above equation for X we

(6,3a)
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The next step in this estimation scheme will be to propose an

_(i) ^estimator of , denoted by (i), which will be substituted into

(6.3a) to give us the following estimator of _:

^ ^ (i)
X = e-Y e-_ . (6.3b)

The estimator for (i) is given by the following expression:

MP _ml

= E Ay4 ,

J=-M"

where Ayj = YJ+I - Yj' YJ represents the observation for the value

of the independent variable equal to zj, and where M "+ = M" for an

odd number of observations but M'" = M" - i for an even number of

observations.

After proposing the above estimator for (i), Johnson and

Brown [1961] investigate some of the properties of _(i) under the

following assumptions:

i) The observed random variables are independent binomlally

distributed random variableS.

2) The value of M" is assumed to be large enough so that we can

take Y-M" = E(Y(-_)) = 0 and yM.. = E(Y(+_)) = i, where M'" has been

defined above. Under the above assumptions Johnson and Brown

^(i)
demonstrate that _ is approximately unbiased and that the

variance of _(i) is approximately equal to din_____2whet e n* is the
n*

number of observations taken at each value of the independent

variable, These authors also demonstrate that the asymptotic
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efficiency of _ as M" becomes large is 88 per cent.

Cornell [1965] demonstrates the similarities between the

Spearman estimation procedure proposed by Johnson and Brown and the

estimation procedure proposed by Fisher [1921] for the model given

by the single exponential equation.

6.3 Generalization of Spearman estimation

In this section we will show how the method of Spearman

estimation discussed in Section 6.2 may be generalized to estimate

the exponential parameters in another regression model that is a

particular member of the class of regression models given by

equation (i.i) for n > i. The particular regression model that we

are interested in may be specified by:

Y.(z) = E(Yi(z)) + Ei (6.5a)I

for i = 1,2,...,n+l and - _ < z < _. More specifically, we will

take our regression model as:

E(Yi(z)) = _il exp (-AI ez) + el2 exp (-%2eZ)+...

+Sin exp (-IneZ) + ei, n+l (6.5b)

for i = 1,2,...,n + i, where the following conditions are imposed:

i) E(YI(-_) ) = E(Y2 (+_)) = i.

2) E(YI(+_)) = E(Y2(-_)) = E(Y3(±_)) = E(Y4(±_)) = ... = E(Yn(±_))

= E(Yn+l(i_)) = 0.

n+l

3) l E(Yi(z)) = 1 for all z and 0 _< E(Yi(z) ) < 1 for all i and z.
i=l
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With the above conditions we mayfind the following relations to be

satisfied by the coefficients of (6.5b):

i) Sl,n+ 1 = 0; Sin = 1 - Sll - el2 - ... - Sl,n_l,

Z) S2,n+ I = i; S2n = -(s21+_22+...+_2,n_l+e2,n+l )

m _ (l+s21+ ...+s2 ,n-l) '

3) Si,n+ 1 = 0 for i = 3,4,...,n+i,

= - (eil+Si2 +" ""+_i ,n-1 )4) Sin for i = 3,4_...,n,

n

5) en+l,k = -E Sik for k = 1,2,...,n.
i=l

It is easily seen by reference to the theorems of Section

3.1 that the regression model given by (6.5b) with the above

conditions may be used to describe an (n+l)-compartment catenary or

mammillary model where a fixed amount of tracer material is injected

into the first compartment of the system and is allowed to

accumulate in the second compartment of the system. The

observations would represent the proportion of tracer material

present in a particular compartment for a particular value of the

independent variable. By a comparison of the results from the

theorems in Section3.1 wlth equation (6.5b), it is noted that we

have taken x = ez. The reasons for doing this are the same as those

given in Section 6.2 for the simple exponential model. With the

above conditions on the coefficients of our exponential terms in the
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regression model, we maynowwrite our expressions for the expected

values as:

E(YI(Z)) = all exp (-_i ez) + _12 exp (-12ez) + ...

+ _l,n-i exp (-ln_l ez) + (i-_ii-_12- ••• -al,n_l) exp (-AneZ);

E(Y2(z)) = i + a21 exp (-_i ez) + _22 exp (-_2ez) + ..•

+ e2,n. I exp (-Ln_l ez) - (I+_21+ ... +e2,n_l) exp (-%neZ);

E(Yn(z)) = enl exp (-_i ez) + =n2exp (-_2ez) + ...

+ an,n_I exp (-ln_l ez) - (anl+en2+ ... + en,n_l) exp (-LneZ);

E(Yn+l(Z)) = - (ell+_21 + ... +anl) exp (-_i ez)

- (a12+_22+ ... +en2) exp (-_2ez) - ...

- (al,n_l+_2,n_l + ... +an,n_1) exp (-An_l ez)

+ (all + ... +en,n_l) exp (-IneZ). (6.5c)

n+l
From the assumption that Z E(Yi(z)) = 1 for all z, we

i=l

note that only n of the equations given by (6.5b) or (6.5c) are

independent• Therefore, without loss of generality, we will work

with the first n equations of this set. The basic steps of the

generalized estimation procedure may be outlined as follows:

Step I: A linear combination of the n elementary symmetric

functions of inL I, inA2,...,in_ n is derived for each of the n
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independent regression equations.

Step 2: The above linear system of equations is solved for the

elementary symmetric functions.

Step 3: Expressions for in%l, in12,...,in% are obtained by findingn
th

the roots of an n order polynomial equation.

lnXl, lnXStep 4: We use the relations _i= e ...,X n = e n to obtain

expressions for ll' .....'In' which are functions of E(YI(Z)),... ,

E (Yn (z) ).

Step 5: We obtain our estimators of %l,12,...,In by approximating

the functions of E(YI(Z)) , E(Y2(z)),...,E(Yn(Z)) by functions of our

observations Yij' where Ylj is an observation on the ith equation

for the value of the independent variable equal to z..
J

Before we can do the first step of our estimation procedure,

we must consider two different cases which cover each of the

equations in (6.5c) and which are given by:

Case i: The regression equation may be reduced to the form:

n-i

E(Yi(z)) = E elk exp (-Xkez)
k=l

+ (laeil-...-_i,n_l) exp (-_neZ). (6.6a)

Case 2: The regression equation may be reduced to the form:

E(Yi(z)) = Oil exp (-Xlez) +...+ _i,n-i exp (-Xn_l ez)

- (_il+...+ai,n_l) exp (-XneZ). (6.6b)

Since the subscript i will not be needed in the following derivation,

we will drop this subscript during the following discussion.



106

First we will consider Case 1 where the regression equation

may be described by:

E(Y(z)) =

n-i

Z ek exp (-Xk ez)
k=l

+ (l-al-...-an_l) exp (-XneZ).

(6.7)

Consider the following integral:

" m k" --jn-i

(k') = f zk dE(Y(z)) = f z d_ Z e exp (-Xk ez)
-_ -_ k=l k

+ (l-a I-.. .-an_l) exp (-XneZ) 1

- k. [n-i
= - f Z I g akXk ez exp (-Xkez)

-_ k=l

z

+ (l-al-"" "-an-l) _ne exp (-)_nez) I dz

(6,8)

for k" = 1,2,...,n-l. A typical term in (6.8) would be of the form

co

- f a zk'xe z exp (-xZ)dz

_00

which reduces to

- a f (Int-lnl) k'e-tdt = - e Ik,- inllk._l

0

+<_) (in%)21k-_2+'''+_k'_l_(-InX)k'-lll + (-inx)k'lo}

by the substitution t = Xz where Ik.. = f (Int) k''e-tdt for
0

k "_ = O,1,...,k'. By sgbstituting the above expressions for a

typical term of (6.8) back into (6.8), we obtain the following

system of equations:
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n-l[_k'_ <k_
Z I_I llk. l(inXk-lnX n) - 2 Ik. 2((inXk)2 - (inkn)2)+...k=l

. _k" ) ._l_(inXn)k._l)+ (_l)k-2 "-I ll((lnXk)k

+ (-l)k'-l((in_k)k'- (inkn)k')_ _k =

(k') + ik. _ _i / Ik._llnX n +

<kk" _ll(-InXn )k+ "-i "-i + (_in_n)k"

Ik._2(inl n)

(6.9a)

for k" = 1,2,...,n-l. In order to simplify the notation in (6.9a),

we make the substitutions ik -- in% k and _ = ak(ik-ln) for

k = 1,2,...,n. Equation (6.9a) becomes

k--i

...+ (_l)k -2 "-i

ik'-i ik'-i
/k -n

Ii _I k -I n J

_

n (x_ =
• - in

_(k') + ik.+ 1 Ik._l(-I n) + Ik,_2(-in)2 +...

+ "'i I1 (-in)k'-i + (-in)k" (6.9b)

for k" = 1,2,...,n-l. A small table of values of the function Ik-

for various values of k" is given as follows:
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Ik_

0 1.00000000

i -0.57721566

2 1.97811199

3 -0.63664683

4 12,45795881

5 -80.84065721

6 486.79308438

At this point we will use matrix notation so that we may

express all of the equations in (6.9b) in a single expression. Let

V be an (n-l) x i vector with k "th element given by

¢)
g(k')+ ik.+ I Ik._l(-in)+ 2 Ik._2(-In)2+...

k_

+(k'-l_ ll(-in)k'-i + (-i)k'.
\ / n

(6.10)

Let =" be an (n-l) x i vector with elements:

Let L" be an (n-l) x (n-l) matrix with (k',k)
th

element given by

k"" (-i) I k .. ik •
k" "=i n

(6.ll)

Using the above defined vectors and matrices we may write (6.9b) as

L" eL" = V. (6.9c)
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For the particular case when n = 4, the matrices L', a',

and V may be written as

1

L'= 211 - (11+14)

\312 311(ii+14) + 2 2- (11+1114+14)

2I1 - (12+14)

2 2
3I 2 - 3Ii(12+14 ) + (12+1214+14)

I )2I 1 - (13+14)

3_2-311(13+14)+ (1_+1314+1_).

and V =

(i) + iI _ 14

_ 2
u(2) + i2 2ill 4 + 14

<3>+13_3_I4+3_11__i_

Next carry out the following set of elementary row operations on the

matrices L" and V:

I) Mu)_Iply the first row by - 312 and add to the third row.

2) Multiply the first row by - 211 and add to the second row.

3) Multiply the second row by - 3I 1 and add to the third row.

4) Multiply the second row by ]4 and add to the third row.
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5) Multiply the first row by 14 and add to the second row.

After the above operations the matrix L" reduces to

i i 1

"i12 -122 -132 )

11 12 13

and the matrix V reduces to

K - 14 \

K + KI-14

K + K2 14 ,

where KI = (i) + ii; K2 = u(2). + 12 - 2iiKI; and K3 = u (3) + 13

- 312K I - 311K 2. The performance of the above elementary row

operations is equivalent to multiplying both sides of (6.9c) by the

triangular matrix

6 i 0 01

T = -211 + 14 1 0

12 - 312 - 21114 -311 + 14 i
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By the use of an inductive argument it can be shownin

general as well as for n = 4 that there exists an (n-l) × (n-l)

triangular matrix T such that

TL: --

'i 1 i . . . i

-i I -i 2 -13 . . . -in_ I

2 2 12i 12 13 " " " n-i

I!-123 -13 " " " n-i

,/
_-ii )n-2 (-12)n-2 (-13)n-2 . . . ( in_l )n-

and

Fi - in

f K2 + K1 in

I

TV-- I K3 + K2 In

t "

(6.12)

(6.13)



where

(l)
K 1 = _ + 11

K2 = (2) + 12 _ 21IK 1

K3 = H(3) + i3 _ 312K I _ 3IIK 2

= _ (n-l)
Kn_ 1 + In_ 1 - _nll _ _n21 _In_2Kl - In_3K 2 -...

(6.14)

Using the above notation, the solution for _" becomes

=" = (TL') -I TV. (6.15)

We note that the matrix TL" is a Vandermonde matrix; therefore,

JTL'J : 11 (ik-lk.) ,_ 0 (6.16)

k<k"

(TL') -I exists since Ik # ik. for k # k" because we have assumedand

that Xk # Xk. for k # k'.

In order to simplify some of the above notation let D = TL"

and let D (k) be an (n-2) × (n-2) matrix derived from D by deleting

the k th column and (n-l) st (or last) row of D. Let C represent the

set {ll, 12,...,in_l} and let C(k ) = C - {ik}. Then from Aitken

([1949], page 118) or Cornell ([1956], page 27) the (k, k) th element

-i
of the matrix D is given by
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dk'k = (_l)n+k'-I ID(k')l A(C(k-) )

IDI n-k-i (6.17)

A(C(k -) )
where n-k-i is the (n-k-l) th elementary symmetric function of the

,

elements from the set C(k.). Using equation (6.15), the k "th

element of _" is given as:

n-i ( l)n+k._l ID(k')l A (C(k')) (_+__lln) (6.18a)c_"k. = Z -
k=l IDl n-k-i

where K = - i.
O

If we define A (C(k'))
O

= i and use the relation

1 A_ C(k')) = A.(C_ k')) - "(C(k'))__n k+l n+_

where C(k. ) = C(k. ) + {in} , then

_k" = (-l)n+k'-i !D(k')! n-ii

IDI k=o
(C(k-) )

Kn_k_lA k (6.18b)

The next step will be to substitute the vector a" into the

following equation:

n-i

r

k=l

(_l)k''-i n ik - ik "
n _

k''=l k " In-k'' ik _ in

n

= (n) + I + l

n k''=l
_n "_ (_ln)k'"
k / In-k'" (6.19)
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With this substitution the following equation is satisfied:

= 0 , (6.20)

where the matrices L" and V have already been defined earlier, and

I" is an (n-l) x i vector with k th element

2 _ 12

<i_ In-i- _2_ In-2 <iklk inn_ + _ n +...In-3 _I k in

n-1 _ in- _ n in
_ _ <ik n (_l)n-1 ik -n,+ (-l)n-2 nnl Ii ik - n ik in

(6.21)

and

n

v = _(n) + I + E
n k" "=i

<_.._ In_k..(-in )k'' . (6.22)

It should be noted that equation (6.19) is merely equation (6.9a)

with k" = n.

For the case n = 4 the matrix is equal to

the display given on the following page:
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Next we will carry out the following sequence of elementary row

operations on the above matrix:

%) Multiply the first row by -211 and add to the second row.

2) Multiply the first row by -312 and add to the third row.

3) Multiply the first row by -413 and add to the fourth row.

4) Multiply the second row by -311 and add to the third row.

5) Multiply the second row by -612 and add to the fourth row.

6) Multiply the third row by -411 and add to the fourth row.

7) Multiply the third row by 14 and add to the fourth row.

8) Multiply the second row by 14 and add to the third row.

9) Multiply the first row by 14 and add to the second row.

After these elementary row operations, which are equivalent to

multiplying the original matrix by a triangular matrix whose

determinant is one, our original matrix reduces to

_i 1 1 K1 - 14 \

11 -12 -13 K2 + K 1 14

2 2 2 K3 + K2 1411 12 13

3 K4 + K3 14/ (6.23b)

where K1, K2, and K 3 have already been defined, and

K4 = _(4) + i4 _ 413K 1 _ 612K 2 _ 411K3.
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Since we want the determinant of
i" T , which is equal to thev

determinant of (6.23b), we will evaluate this determinant by

expanding the determinant of (6.23b) about the elements of the last

row giving us, after extensive algebra,

3

(Ik_ik.) _ (C) (C)+ (C)_A_C))
(-1)3 _k,k'=l (K4+K3A1 +K2A2 K1A3 '

k<k"

This last expression is equal to zero bywhere C : Iii,12,13,14_•
f I

equation (6.20)•

By an inductive argument we may show that the general matrix

V _ may similarly be
- v

reduced to

i i i . . . i

-i I -12 -13 • . . -in_ I

2 2 2 12
iI 12 13 " " " n-i

3 3 3 _13
-11 -12 -13 " " " n-1

• • Q 4

# • • •

\(-ll)n-l(-12)n-l(-13 )n'l . . . (-in_l)n-I

K 1 - in \

K2 + KIIn

K 3 + K21 n

K 4 + K31 n

+
Kn Kn_lln

(6.24)

and, in addition, an inductive argument may be used to show that the

determinant of the above matrix is equal to



118

(-I) n-I JDJ +K ,(C) .... (C) +,, A(C),(Kn n_inl T_n_2a 2 _n_3n3 7...

k ,(c)_..(c) .(c),
2nn_2._lnn_l-nn ) ,

which is a generalization of (6.23c). In the above expression

(6.25)

symmetric functions of the elements of C given by:

(C) (C) (C) +K A (C) A (C) - K
Kn-IAI +Kn-2A2 +Kn-3A3 +''" 1 n-l- n = n"

(6.26a)

Next we will consider the regression model designated as

Case 2, which may be described by the expression

E(Y(z)) -- eI exp (-Xlez)+s 2 exp (-%2eZ)+... •

+=n-I exp (-In_lez)-(_l+...+en_l) exp (-%neZ).

It should be noted that the subscript i has still been left off of

the regression equation in order to simplify the notation for this

particular portion of the discussion. In addition, since most of

the conclusions for this case will be obtained by steps that are

very similar to those used for Case I, we will not include as many

of the detailed steps here as we did for Case i. However, we will

refer back to the corresponding portions of the discussion for

Case 1 so that the reader may be able to add the intermediate steps.

KI, K2,...,Kn_I, and D have already been defined, C = {ll,12,...,in}

= C + {in} , and Kn = U In_iKl - In_2K2-...

-_nn2> 12Kn_ 2- _nnl>IiK_ I. Since ,D, # 0, by using equation

(6.20) we obtain for Case I the linear combination of the elementary
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Again we begin our estimation schemeby evaluating the following

integral:

_(k_) = _k'dE(Y_))

_.. /n-1 1= fz k d_ E a, exp (-lkez)-(al+...+_ k) exp (-XneZ)
-® Lk= 1

= fzk z exp (-Xk ez)

z (_XneZ)+ (al+...+_n_ I) %ne exp dz (6.27)

for k" = 1,2,...,n-l. Using the same substitution and procedure to

evaluate the above set of integrals as we used to derive the set of

equations given in (6.9a), we obtain the following set of equations:

n-i/k" /k" _ "" k'" _

E _Z _J (-l)k''-l((in_k)k -(inXn) )9 °k
k=l _k "=i k'" Ik'-k'"

= _(k') (6.28a)

for k" = 1,2,...,n-l, where If, I2, I3,... have been defined earlier.

Using the same substitution that we used earlier to go from equation

(6.9a) to (6.9b), equation (6.28a) becomes:

n;l " _ k'-k'" (-l)k''-i ik =

(6.28b)

for k _ = 1,2,...,n-1.

Using a matrix notation similar to that used to obtain

equation (6.9e), we may write equation (6.28b) as:
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L" a* = V"

where L" and a" have been defined earlier, and

v" = (u(I),u(2),...,u(n-1))T.

If we premultiply both sides of equation (6.28c) by the triangular

matrix T mentioned in connection with equation (6.12), then equation

(6.28c) becomes

(6.28c)

TL" a" = TV" or D a" = TV"

where

and

TV

K_+Ki 1n

o

\Kn_1÷ Kn_21 n

KI - ,(I)

K_ = p (2)-211K i

K_ " _(3)-312K_-311K_

(6.29)

"-\n 2J ln-2"

(6.30)
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For Case 2 the solutlon for a" is given by

D-1a" = TV"

or

a_: (_l)n+k._l iD(k')l n;l A(C(k.))
" IDI k-I n-k-I

(6.31a)

lD(k') [ n-i A(C(k.))
Z KI_ n-k-I. (_l)n+k'-IIDI k=l (6.31b)

(C(k-))
= 1 and

for k" = li2,...,n-1, where K; = 0, AO

C(k.) - C(k.)+ {i} " {ll,12,...,In} - {Ik. }. The next step will be

to substitute the expressions for the _ 's into the equation

(6.32)

It should be noted that equation (6.32) is the same as equation

(6.28b) with k'- n. With the above substitutions the following

relation is satisfied:

=0

(6.33a)

(n)
where L', V_,l', and _ have already been defined. Using the

same type of elementary row operations that we used to obtain

equation (6.24), which we indicated earllerwere equlvalent to

multlpllcatlon by a triangular matrlxwhose determ/nant equals one,
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may be reduced to

1 1 1

-I1 -i 2 -13

2 2 2
11 12 13

• ° • 1

• " -ln-1

• " " 12-1n

K_+_ in \\

3 3 3
-iI -12 -13

_13
n-I K_ + K3 in

(-11)n-2 (_12)n-2 (-13)n-2

(-11 n-1 (-12)n-i (-13)n-i

• °-2 ÷ Ini(-in_1) z__1

(-in_l)n-I K£ + _-I ln_ ,

(6.33b)

where K_, K2_...,K__ 1 have been defined earlier and

Kn,, _(n)- _i)in_IK_ __2)in_2K_ _.,._ _nnl) IIK__I .

The equation given by (6.33a) is equivalent to the

determinant of the matrix given in (6.33b) being set equal to zero•

If we expand the determinant of this matrix about the elements of

the last row and use an inductive argument similar to that used to

obtain equation (6.25), then we find that equation (6.33a) is

equivalent to

_c> _c>+..+z.,(c>+z.^(c>_(-l)n-llsl (_÷_ i _ 2A - O.- - " 2"_-2 1 n-l"

(6.33c)
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Since we are assuming that IDJ # O, equation (6.33c) is equivalent to

I__i A C)+K n_2 A C)+" ""+K2An-2+KIAn-I - Kn • (6.33d)

At this point we will add the appropriate subscripts to the

K's and K"s in equations (6.26a) and (6o33d) so that we will know

from which regression equation our linear combination of the

elementary symmetric functions arose, and combine the above results

into the following theorem:

Theorem 6.1: If a regression model may be specified by equation

n+l

(6.5c), and if it is assumed that 7 E(Yi(z)) = 1 for all z, then
i=l

by the evaluation, for each value of i = 1,2,...,n, of the set of

integrals

(k') fzk dE(Yi(z) )_i =
--OO

for k" = 1,2,...,n, the following set of linear equations in the

elementary symmetric functions of in%l, in%2,...,in% n are satisfied:

A(C)+I ^(C)+K ^(C). .(C) _(C)
Ki,n-I i _i,n-2n2 _i,n-3n3 _" "'+KilAn-l-an = _ Kin

(6.26b)

for i = 1,2 and

k" .(C) .... _C)+K A(C)+. +.... (C)+K,.. (C) -K;i,n-lnl _i,n-2 A i,n-3 3 "" L_i2nn-2 _ill_n-i = in

(6.33e)

for i = 3,4,...,n. The K's, K"s, and the set C have all been

defined earlier in connection with equations (6.26a) and (6.33d).

From the equations (6.26b) and (6.33e) we have a system of n
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equations that are linear in the n unknown quantities

A(C) , A_C),..., Art'(C), i.e. the n elementary symmetric functions of

inAl, inA2,..., inA_., Therefore we can solve this system of

equations for the quantities A_c)- ' A2_C)--''''' A(C)inn terms of the K's

K"s. Fro the solutions for A C)- A (c)
' ''''' n , which will

be ratios of linear combinations of the K's and K_'s, we may find

the solutions for inAl, In12,..., InA n by obtaining the n roots of

the polynomial

n .(C) n-1..(C) n-2 .(C) n-3_ +t I_n-IA(C)w+C l_nA (C)
"" "- " n-i "- " nw -n I w _n 2 w -I_3 w _. = O.

(6.34)

inA 1 inA 2 inA n

Using the relations Al=e , A2fe ,... ,Anfe we may then use

the n roots of equation (6.34) to obtain solutions for AI,A2_...,A n •

We note that the solutions for AI,A2,...,A n are functions of the K's

and K"s, which, in turn, are functions of known constants and the

_k')for i, k" = 1,2,...,n. Hence in order tounknown quantities

obtain estimators of the exponential parameters we will propose

estimators for the _k') Is.

On each of the regression equations of our model, the

observations will be taken according to the same procedure as

described in Section 6.2 for the single exponential model, i.e. the

2M'+I or 2M" observations on each equation are taken for the values

of the independent variable given by zj ffi Zo+Jd or zj = Zo+d(J+ 21-) ,

respectively. Let YiJ represent the jthobservation on the i th

equation. Then by considering the definition of a Riemaun-Stleltjes
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integral the estimator of _(k') is given by

M'_-I iz +z + --k"

_k'> J--." (6.35a)

where Aylj = Yi,J+l- YlJ' zj has been defined earlier for both

situations when an even or odd number of observations have been

taken, and M _'= M'-I if an even number of observations are taken but

M "_= M" if an odd number of observations are taken. Since we will

be interested in investigating some of the asymptotic properties of

our estimators of the exponential parameters, we will assume that

M" is large enough so that y = E(YI(-_)) and y or y
i,-M" i,M'-i i,M"

= E(Yi(')) depending upon whether an even or odd number of

observations has been taken. With this last assumption the

estimator _(k') slmpllfles to the following expression when an

odd number of observations have been taken:

_k') = (.o__.d+ _.)k'z(q(__))

M"-2 ( k'_(Zo+Jd+ >+ r. (Zo+Jd-d) d)k"
J=-M+I YlJ

+ (Zo+M"d- _)k"E(yi(+ ®)). (6.35b)

If the ith re_resslon equation is of the form speclfled by Case i

^(k')
then the expression for _i simplifies to
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_(k'),, M'_I .{(Zo+ d(j- l))k'_
i J=-M'+I

k_

+ (Zo_(M. - 1)) ,

k.)(Zo+d(J+ 21-)) YlJ

(6.35c)

and for a Case 2 regression equation this reduces to

r (Zo+d(j_ 21__))k'_ (Zo+Jd + d) k_"
_i J=-M'+I YlJ "

(6.35d)

For the situation when an even number of observations have been

taken, equations (6.35c) and (6.35d) reduce respectively to

ar.d

_(k')= M'_2 _(z +jd)k'-(Zo+Jd+d)k')ylj+(Zo+d(M'-l))k"
J=-M'+I t o

^(kO= M'-2Z {(Zo+Jd)k'-(Zo+Jd+d)k" )
_i J=-M'+I YlJ

Hence by using the estimators of _k') given by equation (6.35a)

in the expressions for the KIs and K"s, we may obtain our

estimators of the XkwS for k = 1,2,...,n. The estimators of the

linear parameters in our regression model may be found by the same

technique as we used in Section 5.3 of Chapter 5.

6.4 Some properties of the generalized Spearman estimators

During the presentation and development of the generalised

estimation procedure in Section 6.3, the only assumption that we used

concerning the random variables ¢iJ was the assumption that E(elj)=O
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for all i and j, and the assumption that M_ is large enough to that

= E(Yi(-_)) and Yi,M'-I or Yi,M" = E(Yi(_))" However, beforeYi,-M"

we investigate someof the properties of our estimators we will make

someadditional assumptions about the randomvariables Eij and about

the spacing of our observations. These assumptions maybe stated as

follows:

i) For fixed i, the randomvariables eij , where i = 1,2,...,n and

j = 0, ±I, ±2,...,±M" or j = O,±I,±2,...,±(M'-I), -M', are un-

correlated with E(eij) = 0 and finite variance such that Var (elM.)

tends to zero as M" _> _ .

2) For i # i" and j # j', the randomvariables eij and El. j. are

uncorrelated.

3) For k" = 1,2,...,n and i = 1,2,...,n, the following limit

exists:

lim d E (zj) Var ) (6.36)
M"--> _ j=--M'+I Pk'-i (Eij

where M'" has been defined earlier and

k _ k _

2 - - d'k" " ' dk"

k'-i d k_-2 d d k'-3 d 2=-d %- _) +%- 2> %+ 2)+%-2) %+ _) +

d k'-2 d k'-l_

...+%- _)%+_) +%+_> ). (6.37)

4) For all J, as M" --> _ we want Zj+l-Zj--> O, i.e.

lim
d=O.

M "-->
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5) As M" --> = we want ZM..-Z_M. _> ®, which is equivalent to

lim
dM" = _.

M _" --> o_

All of the assumptions of the above lemma are satisfied in

some reasonable and practical situations although the third

assumption may be difficult to verify. As one particular example

where these assumptions are reasonable, we will consider the case

when i = n = k" = 2 and we will assume that the random variables _2j

P2j (I-P2j)

are independent with E(c2j ) = 0 and Var (E2J) = n* where

= zj
P2J _21 exp (-kl ezj) + (I-_21) exp (-k2e ). This particular case

might arise when we use the normal approximation to the distribution

of a blnomially distributed random variable. For this situation

PI (zj) = (zj- 2d-) + (zj+ d) = 2z.3

and equation (6.36) becomes

lim M''-2 2 P2j(I-P2j )

M" --> = d E (2zj)
j=-M'+I n*

oo

4 z2
= n--* S (u21exp (-/lez)+(l-a21)exp (-k2eZ))

(i-_21 exp (-_e z) - (i-_21) exp (-k2eZ)) dz.

By making the substitution t = exp (-e z) and after extensive algebra

we can show that the above integral is equal to
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V
+ 2(in(ll+12)-in12-1n2) [12_(In(11+12)+in12+in2)

1
+ _ ((_ (Ii+12)) 2+in (Ii+12) in12+In (Ii+12) in2+(in12) 2+(in2) 2+2 in21n12 _

+ In12 [ 12+Y (21n12+in2)+ _((in2) 2+31n21n12+3 (in12) 2) 1

2 _(in2+In11_in(11+12) ) [12+Y(in2+in11+in(11+12) )e21

'2 2 + 2
i((In2)+21n21n11+(In11)+In21n(11+12)+In111n(11+12)+(In(1112)) _I

(ln2+ln12-1n(Ii+12)) [12+Y(ln2+in12+in(11+12))

1 ((in2) 2+21n21n12+(in12) 2+in21n (II+12) +in121n (Ii+12) +(in (Ii+12)) _I_I+y

Where 12 and 7 have been defined earlier. Since e21, 11, and 12 are

nonzero constants, it is ob_ous that the dove expression is

finite. Hence we see that the third assumption in a practical

example holds _d can be verified.

At this point we want to show that the estimators that have

been proposed in Section 6.3 for the exponential parameters are

consistent estimators under the five assumptions given dove. In

order to prove this we will need the following lemma:

^(k')
Lemma 6.2: If _i , as given by equation (6.35a), is the proposed

estimator of v for i, k'=l,2,...,n, then V

prob_ility to zero under the assumptions stated at the beginning
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of Section 6.4.

Proof: From the specification of our regression model by equations

(6.5a) through (6.5c) we may write

_

Am(gi(zj))-_k )+ l ) A¢ij.Bi -_i _j=-_:M" ) ... M"'-lj=_M.

(6.38)

Using the definition of the Riemann-Stieltjes integral (see Olmstead

[1959], page 179) and the fourth and fifth assumptions of this lemma,

we can write

_

M" _> " "j=-M
'))AE(Yi(zj)) - _ = O.

(6.39)

Next consider the term

k"

M"-I / zj+zj+I
(6i40)

Since we have developed this estimation procedure under the

assumption that M" is large enough so that yi,_M.=E(Yi (- =)) and

Yi,M..=E(Yi(+ =)), where M''=M" if an odd number of observations has

been taken but M''=M'-I if an even number has been taken, we may

write equation (6.40) as

M''-2E {<zj+zj_l)2
j_-M'+l

k" k p

If we can show that the variance of (6.41) converges to zero as

M _ --> _, then we may apply a form of Tchebycheff's theorem given by
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Cramer ([1946], page 253) to conclude that this expression converges

in probability to zero. Using the first and second assumptions of

this lena, the variance of (6.41) is given by

M''-2 [ l 2

d2 E _P_. 1(z.) j Var (eij)
J=-M'+I " - -- J

(6.42)

where Pk._l(Zj) has been defined in equation (6.37). From the third

andfou_th assumptions of this lemma given at the beginning of Section

6.4, the expression in equation (6.42) tends to zero as M" --> ®,

since d--> 0 and the limit given by equation (6.36) exists. Hence

_(k') _ (k')
by combining the above results we may conclude that _i -_i

^_k')isconverges in probability to zero and _ a consistent estimator

(k')
of _i "

The lemma, which is presented next, is an interesting result

concerning the fourth and fifth assumptions used in Lemma 6.2.

Lemma 6.3: The condition d=0(M "-E) for 0 < _ < i is a sufficient

condition for the fourth and fifth assumptions used in Lemma 6.2 to

hold.

Proof: From the hypothesis of our lemma, we know that dffi0(M'-C).

lim M.-E=0
Therefore d is at most of the order of M "-e. However M" --> ®

lim d=0 Also since d=0(M'-C), we know
for 0 < _ < i. Hence M'--> _ "

ffi lim dM "¢= constant < _. Thereforethat _im

M'"-I_> _ M "-C M" --> _

lim dM" ffi lim dM.¢M.i-c= =.
M'--> = M'--> ®
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Hence from our hypothesis we note that the fourth and fifth

assumptions of Lemma 6.2 are satisfied.

From the estimation equations for the elementary symmetric

functions, A(C)r , r=l,2,...,n, of inll, in%2,...,in% n given in

Section 6.3, we can easily see that these functions are rational

functions of the _ (k_)• 's. Hence from Slutsky's theorem (see Cramer
l

•(C) for[1946] page 254) we conclude that L (C) the estimator of Ar
• r

r = 1,2,...,n, is a consistent estimator of A_C)- . From the method

that we used in Section 6.3 to solve for the parameters

%1,_2,...•%n, these parameters will be continuous functions of the

^ ^ A

A(C)r for r=l, 2,...,n. Since the estimators %l,12,...,%n of the

parameters _i,_2,...,l n are found by substituting the expressions

.(C) these estimators will be continuous
for Lr-(C) in place of A r

functions of the L_C)for r=l,2,...,n, and we may conclude that the

^ A ^

estimators _i,%2,...,%n are consistent estimators of ll,%2,...,ln

(see Wilks [1962], page 103). From the above discussion we have

the following theorem:

Theorem 6.4: Under the assumptions of Lemma 6.2, the estimators

^ ^ ^

_i,_2,...,%n, which have been found by the generalized Spearman

estimation procedure• of the parameters %l,%2•.,.,%n in the

regression model specified by equations (6.5a) through (6.5c)• are

consistent.

Since we will be using the same procedure here to estimate

the linear parameters of our regression model as we used in Chapter

5, we will also have a theorem corresponding to Theorem 5.4 given by:
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Theorem 6.5: The estimators of the linear parameters in the

regression model, specified by equations (6.52 a) through (6.5_),

that have been found by the generalized Spearman estimation

procedure of Section 6.3 are consistent, under the following

assumptions:

i) The assumptions of Lemma 6.2 are satisfied.

2) The random variables Eij are normally distributed.

3) The estimators of the linear parameters are continuous

functions. Since the proof of this theorem follows closely the

proof of Theorem 5.4, we will not repeat it here.

Now that we have established the consistency of the

estimators of the parameters in our regression model, we want to

determine the asymptotic distribution of the n x i vector of

estimators of the exponential parameters Ii,12,...,I n. Before

deriving this asymptotic distribution we will consider the

following vector:

*) .^(l) (I) n)__ . ,*)- _ = _i -_i ''''' _2 -_2

T

^(n) (n) ^(1) _(I) ^(n) (n)) ,
_2 -_2 '''''_n - n '''''_n -_n

^(k')and _k')have been defined earlier inwhere _i

,ele_

equation (6.35a)

and Theorem 6.1, respectively. Now let us consider

(6.43)

3

(_(*)- t,1_(*)) / d2 _"+M''-2 (6.44)
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where d, M', and M'' have already been defined. Using Lemma 6.3 we

3

lim d 2' _I'+M''-2 is a constant Therefore,can show that M" --> _

using Lemma 6.2 and a convergence theorem from Cramer ([1946], page

254), we conclude that the limiting distribution of the expression

in equation (6.44) is the same as the limiting distribution of

3

e (d) / d 2 _M.+M _._2 since

c (d)

= +
3 --3 -3

d 2 /M'+M''-2 d2 JM'+M''-2 d2 /M'+M''-2

(6.45)

M" "m2

(d)where E,. =

j=-M'+I

T

c(d) r(d)- / (d) T e(d)T e(d)T_
*j -\j_Cl_ ' 2j ''''' nj / _ and

e(d) = - deij(Po(Zj ) pl(zj) (zj))Tij ' "" "'Pn-i where Pk._l(Zj) has been

defined earlier. With the above definitions and a direct

application of a multivariate form of the central limit theorem

stated by Cramer ([1936], pages 113-114), we may prove the following

lennna:

Lemma 6.6: Under the assumptions used in Lemma 6.2, the vector

3

(d)/ d2 _M'+M;'-2 has a limiting multivariate normal distributionE,.

E,e(d) (d) T-
lim _ ,. E,. )

with mean vector 0 and covariance matrix M" --> = d3(M.+M.. 2) '

provided
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Ece(d)e(d) T
lie " *" *- )

(6.46)
i) M"--> _ d3(M_+M_._2)

exists (i.e. the limit of each element of this matrix exists) and

not every element of the matrix is equal to zero;

llm 1 f 2 2 dFjE (tl+t2+...+t) = 0 (6.47)
2) M" --> _ M_+M''-2 j=-M'+l

(t_+...+t_),g(M'+M''-2)

3

e(d) d2
for every _ > 0 where Fj is the distribution function of ,j / .

I

In some practical situations it may be difficult to

determine whether the two additional assumptions of Lemma 6.6 are

satisfied or not. However, these additional assumptions are

satisfied in some reasonable and practical situations, as we will

show by considering a particular example. The particular example

that we will consider involves the case when

3 1

2/ d) distribution, and thise_ )//d 2 = - elj/ d 2 has a N (0,oj

example could arise when a normal approximation is used for the

distribution of binomially distributed random variables. This is

similar to the example considered earlier in our discussion on the

reasonableness of the assumptions stated at the beginning of

Section 6.4. The first of these two additional assumptions may be

verified in a manner very similar to that used to verify the third

assumption given at the beginning of Section 6.4. In fact, we must
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use that assumption in order to verify whether this first additional

assumption is satisfied, since the diagonal elements of (6.46)

involve terms of the form given by (6.36_. Concerning the second

additional assumption, for this particular example equation (6.47)

becomes

-- I 2 I{t_/ (2_/d) }

lim i M''-2 [ tle ±E dt

M"--> _ M'+M''-2 j=-M'+l._ _/d i
3

, t1

Let tI =
JM'+M''-2

less than or equal to

t_>_2(H'+H''-2)

Then the above expression can be shown to be

Ml _--2

lira
E

M h --> oo

j=-M +i
O_/{ d (M'+M''-2) }.

From the assumptions of Lemma 6.2 stated at the beginning of Section

6.4, we conclude that this limit equals zero. Hence we can see that

the two additional assumptions of Lemma 6.6 are satisfied in at

least one reasonable situation.

Using the conclusion of Lemma 6.6 along with the fact that

3 1

(_*) - _*)) / d2 (M'+M''-2) 2 has the same limiting distribution as

3 I

j_d)/ (M'+M''-2) 2 , we will expand the estimators of the

exponential parameters in a Taylor's series about the point _*)

^(k') (k') I < 8 for all i and k" andwithin the neighborhood _i - _i --

6 • 0 where the vector _*)-_*)_as already been defined earlier.
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where

^ ^

_(*) (*)
(6.48)

F-_"

/

F£ =k,,_ "(*) (*)''''' _(n)P* =P* i

_%k @Xk

_ql) l ^(*)_.=_,(*)'"'' _^(n)_n

()_ (),'",
_, -_,

,"(,) (*) ]
_, =_, . /

for k = 1,2,...,n; and G'= I
\ /

where

G£ : 7 i,k',i',k'"

.,(k" ") (k'')

>^(k") _(k'))(pi.. )_i - i -_i"

_^(k')_ (k") ^(*) (*)+8k(;_*) (*)o_ i o_ i. _, =_, -_, )

for k = 1,2,...,n and ]ekl < i. Under the assumption that the

^ ^ ^

estimators _I' %2''''' %n have continuous second order derivatives

^(-
within the region _ik )- _i(k')l --< 6 . we may use a proof similar
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to that used to prove Theorem5.5 to conclude that
3

(_-_)/(d 2 CM'+M''-2 ) has the same limiting distribution as

3 i

.^(_) (_)..
F" _, -_, )l(d 2 (M'+M''-2)2). From Lemmas 6.2 and 6.6 we

3 1

conclude that the limiting distribution of (i-l)/(d2(M'+M''-2)2)^-

is a multivariate normal distribution with mean vector 0 and

covariance matrix

lira i F'E \ ,. ,. .
M" --> _ d3 (M'+M''-2)

Combining these results we have:

^

Theorem 6.7: If _ represents the estimator of the vector

of exponential parameters of our regression model found by the

generalized Spearman estimation procedure presented in Section 6.3,

^

if the elements of _ have continuous second order derivatives of

^(_)
every kind with respect to the elements of _, , and if the

assumptions of Lemmas 6.2, 6.6 and Theorem 6.4 are met, then

3 i

(_-%)/(d 2 (M'+M_'-2) 2) has a limiting multivariate normal

distribution with mean vector 0 and covariance matrix given by

equation (6.49) as M" --> _ •

As we did in Chapter 5, we now propose to obtain an

expression for the asymptotic efficiency of the generalized

Spearman estimators of the exponential parameters in our regression

model. From the ideas presented by Kendall and Stuart [1961],

we take as our measure of the asymptotic efficiency of our

(6.49)
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estimators, the following ratio:

where L represents the likelihood function whose form will be

specified and Q represents the asymptotic covariance matrix of our

estimators as obtained from the results of Theorem 6.7.

We will derive the expression for v when the assumptions

concerning the random variables of our regression model given at the

beginning of Section 6.4 are satisfied and the likelihood function

is specified by

(6.50)

L

J=-M"
.

M'+M""

(2,,) Izjl 2

- _(Y, -E(Y, ))TE-I(Y, -E(Y, )))exp 2 j J J j j

(6.51)

where

YIJ'

Y.j = Y2iJ
; Ej = E(Y,j-E(Y,j))(Y,j-E(Y,j))T; and in accordance

with equation (6.5c) and the assumption

n+l

Z

i=l
E(Yi(z)) = 1 for all z,
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E(Y,j) =

/ECY j)\

E(Y2j)

1E(Ynj) /

for J = - M', -M'+I,...,O,I,...,M'-I, and/or M'. That is, we are

assuming that the vectors Y,j are independent each with a

multivariate N(E(Y,j), Ej) distribution• In order to find v, we need:

M''-I M'+M'" M''-I

In L = - E in (2_) 2 1

J=-M"

and

%'here

1 )T_jl- _ E (Y,j-E(Y,j) (Y,j-E (Y,j))
J---M"

_inL
E

J=-M"
Dj Zj-I (y.j -E (Y,j) )

Dj=

/ _E(YIj)

_A1

_E(Y!lj)

n

• • •

_E (Ynj)

_}E(YnJ)

n

(6•52)

(6.53)

(6.54)
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Hence from the assumptions that we have made at the beginning of

Section 6.4 we have:

E\ a), Ix, a), j Z D Zj-IDj T.
J=-M" j

(6.55)

A

From Theorem 6.7 we have the asymptotic covariance matrix of _ given

by

. (d) c(d)T F'T
F'E_e,. ,. , =

_ _ _

Z F" (Wj_)Zj) F "T
j=-M"

(6.56)

where

Wj =d 2

and

P (zj) P . . .

0 o(Zj)Pl(ZJ )

2

Po(Zj)PI(zj) Pl(Zj) • . •

\Po (z j) Pn-1 (z j) P1 (zj) Pn-1 (z j)

Po(Zj)Pn_l(Zj)\

Pl(Zj)Pn_l(Zj)

P21 (zj) /
(6.57)

zj=

E(e2j) E(EIjE2j) • . .

2

E(¢ljC2j) E(E2j) • . .

E(eljEnj) E(E2j_nj) • . .

E(ClJenJ) 1

E(E2jCnj)

(6.s8)
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and F" has been defined earlier. Therefore we may combine the

above results into the following theorem:

Theorem 6.8: When the likelihood function of the vectors Y,j is

given by equation (6.51) then the expression for the asymptotic

efficiency, defined in (6.50), of the vector of estimators of the

exponential parameters reduces to the following expression:

M" "-i _ -i
M"-I -i T

Ij=_M.E Djrj DjlIj=r_M F'(Wj_Ej)F'T I

(6.59)

In Chapter 7, where a comparison of the various estimation

techniques discussed in this research will be made, the expression

given by equation (6.59) will be evaluated for some particular

regression models.



VII. COIIPARISONSANDILLUSTRATIONSOFTHE

GENERALIZEDESTIMATIONPROCEDURES

7.1 Introduction

In this chapter we will apply the generalized estimation

procedures developed in this research to various sets of data

concerned with experimental situations. The particular models

that we will be considering in this chapter are given by equation

(i.i) with n = m = 2, where we assumethat e. is known. Wewill
io

work out someof the details of these estimation procedures and

in Sections 7.2.2 and 7.2.3, where the generalized partial totals

and generalized Spearmanestimation techniques will be applied to

particular sets of data, we will also determine the generalized

least squares estimates of the parameters of interest. This will

give us somecomparisons of the various techniques for particular

sets of data. Finally we will evaluate the expressions for the

asymptotic efficiency of our generalized estimation procedures

for somespecial cases, and this will be used as another

criterion for comparing these various estimation techniques.

7.2 Application of the estimation
procedures to specific examples

7.2.1 Generalized least squares

In this section we apply the generalized least squares

143
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procedure to the experimental example presented in the article by

Galambosand Cornell [1962] where a mathematical model is

formulated to describe sulfate metabolism in patients. Wemay

think of this problem as a three-compartment mammillary (or

catenary) system where the radioactive tracer is initially

introduced into the first compartmentand ultimately accumulates

in the second compartment. Figure 7.1 gives a schematic

representation of the compartmental system of interest. The

2 ( ! 321

__! T13

Fig. 7.1--Compartmental model for the data given in Table 7.1

numbered boxes in this figure represent the three compartments,

and the _'s in this figure represent the turnover rates or

transition probabilities defined in Section 3.1 of Chapter 3.

The observable random variables represent the proportion of

injected radioactive tracer present in the respective

compartments; and since the sum of the expected values of these

random variables is always equal to one, there are only two

independent regression equations. The set of independent

regression equations for this particular example is given by
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-e2x j -83x j

Ylj = ele + (l-81)e + eli = fl(e'xj ) + EIj

-e2x j -e3x j

Y2j = l-(81+e4)e - (l-81-e4)e + e2j

= f2(8,xj) + e2j , (7.1)

_ere 84 = (83-e2)el(l-el)/[(83-e2)81+82 ], so there are actually

only three independent parameters to be estimated. Using the

notation of Chapter 4 we have e = (81,82,e3)T. The data for this

particular example is given in Table 7.1, where the values taken

on by the random variables YIj and Y2J are denoted in the columns

headed by Ylj and Y2j' respectively. All of the values given in

Table 7.1 were taken from the article by Galambos and Cornell

[1962], except the value of Ylj for j = i, which was extrapolated

from the earlier observations so that we could display the

generalized least squares procedure in its simplest form.

The first step in our generalized estimation procedure is

to obtain estimates of the quantities Oli = E(E_j), 022 = E(E_j),

and o12 = E(EIj_2j) for all j. Using the observed proportions,

plots are made on semi-logarithmic paper in order to compute the

vector of preliminary estimates of the vector e given by

^

e = (0.381, 0.021, 0.197) T. Using the proportions YI3 and theo
^

vector of preliminary estimates ° e, we apply Hartley's modified



146

TABLE7.1--Data to be fitted by the generalized least squares
procedure

j X.
3 Ylj YZj

i 0.33 0.92 0.03

2 2 0.84 0.I0

3 3 0.79 0.14

4 5 0.64 0.21

5 8 0.55 0.30

6 12 0.44 0.40

7 24 0.27 0.54

8 48 0.12 0.66

9 72 0.06 0.71

Gauss-Newton procedure as discussed in Section 4.2 to the first

regression equation of (7.1). After applying this technique to

the first regression equation of our model, we find the following

vector of estimators of the elements of e: _(i) =

(0.5752, 0.0322, 0.1816) T. From equation (4.14) we recall that

^ I ^T ^ ^ ^

Oli = _ el,Cl, , where the elements eli of the vector el, are given

in column (2) of Table 7.2. Similarly, using the observations Y2j

from the second regression equation of our model given in

equation (7.1), we find _(2) = (0.282, 0.021, 0.195) T. The

^ ^

elements e2j of the vector e2, defined in Chapter 4 are given
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TABLE 7.2--Deviations to be used to estimate covariance matrix

(z) (2) (3)
^ ^

J elj e2j

i -0.04920 0;01287

2 0.00528 0.00340

3 0.02144 0.00107

4 -0.02093 -0.00339

5 0.00615 -0.00380

6 0.00121 0.00588

7 -0.00087 -0.00485

8 -0.00255 0.00442

9 0.00348 -0.00200

in column (3) of Table 7.2. The sums of squares of the entries in

columns (2) and (3) of Table 7.2 after division by N ffi9 yield

^ ^

Oll ffi3.7832 x 10-4 and 022 = 3.1787 x 10-5 , respectively. The

sum of the cross products of these columns after division by N = 9

A

gives o12 = -6.1292 × 10 -5 •

Having estimated the elements of the symmetric matrix o**,

^

the estimated matrix is denoted by o** and an estimate of _ is

given by _ = I Qo**_ Using the vector ° e of preliminary

estimates of the vector e, we determine the elements of the
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matrices f_ and y - f" defined in Section 4.3. The regression
O O

equations in (7.1) with 8 substituted for 8 are used to evaluate
O

y - of , and in order to evaluate the matrix of" for this example,

the derivatives _fl(e,xj)/_e k and _f2(0,xj)/_6 k for k = 1,2,3
^

are calculated with 8 substituted for e using the derivatives
O

_e4/_e k for k = 1,2,3. Substitution of these quantities into
^

equation (4.13) along with the substitution of _ for _, leads

after one iteration to a new vector of estimates

^ T

18 = (0.30558, 0.01870, 0.14350) . Using Hartley's modified

procedure, after nine iterations this iterative process gives us

^

8 = (0.07397, 0.00752, 0.09228)
T

correct to four decimal places.

Graphs showing the original data (x) and the fitted equations

are shown in Figures 7.2 and 7.3 for the first and second

regression equations, respectively, of (7.1).

7.2.2 Generalized partial totals

In this section we apply the generalized partial totals

estimation procedure developed in Chapter 5 to the set of data

given in Table 7.3. The data given in this table was

manufactured for the regression model given in equation (7.2)

below by adding random normal deviates to calculated expected

values. The regression model of interest is given as follows:
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TABLE 7.3--Data to be fitted by generalized partial totals and

least squares estimation procedures

xj (=j) Ylj Y2j=I-Y2j Partial Totals

0 0.99580 0.98526

I 0.86755 0.90118

2 0.75378 0.78387

3 0.68462 0.72374

4 0.58998 0.64451

5 0.49806 0.58602

6 0.49066 0.57477

7 0.35738 0.43660

Sll = 5.23783

S21 = 5.63595

8 0.31896 0.44126

9 0.32844 0.43487

i0 0.24684 0.34459

ii 0.29593 0.38054

12 0.18045 0.28662

13 0.25398 0.33810

14 0.17297 0.29868

15 0.16266 0.28096

S12 = 1.96023

S22 = 2.80562

16 0.15076 0.24881

17 0.12821 0.22204

18 0.12233 0.24219

19 0.15341 0.29722

20 0.13334 0.24112

21 0.08309 0.17590

22 0.09083 0.19781

23 0.09450 0.20356

S13 = 0.95647

$23 = 1.82865
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-AlXj -%2xj

YIj = ale + (l-al)e + elj

-AlXj -A2xj

Y2j = 1 - e2 e - (l-e2)e + e2j (7.2)

Instead of recording the observations Y2j on the second regression

equation of (7.2), we record y_j = i - Y2j so that

-_ixj -_2xj

E(Y_j) = _2 e + (l-_2)e will be of the same functional

form as E(Yij).

For this particular example we have 24 observations on

each regression equation, therefore we divide each set of

observations up into three groups each containing eight

observations and form the following partial totals:

8q-I

= _ Yij (7.3)
Siq j=(q-!)8

for i = 1,2 and q = 1,2,3. The values for these partial totals

are also given in the last column of Table 7.3. Using equation

(5.12) we are now able to use the set of equations given below

to obtain estimates of the elementary symmetric functions of

-8_ I -8_ 2
e and e ._ denoted by L1 and L2:
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SIIL2 - SI2L1 = -S13

S21L2 - S22L1 = -S23 (_. 4a)

or

5.23783 L2 - 1.96023 LI = -0.95647

5.63595 L2 - 2.80562 LI = -1.82865 . (7.4b)

Solving the set of equations given in (7.4b), we find L1 = 1.14810

and L2 = 0.24706. In order to obtain the estimates of

-8_1 -8_2
e and e we obtain the two roots of the following quadratic

equation:

2
w - 1.14810 w + 0.24706 = 0 . (7.5)

The roots of (7.5) are given by wI = 0.86123 and w2 = 0.28687.

Without loss of generality wewill assumethat _i < 12' and

therefore our estimates of %1and 12 are given by
^ = -1 -1
A1 0.01868 = _ in(0.86123) and i2 = _ in(0.28687) = 0.15609,

respectively.

The next step in our estimation procedure is to estimate

the linear parameters, aI and e2, present in our regression model

given by equation (7.2). Our observations given in Table 7.3

were generated by adding random normal variables to calculated

values and taking E(c_j) = Oli = 0.001;expected

E(e_j)z = 022 = 0.001; and E(_lje2j) = o12 = 0.0009 for all j.
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Therefore in this particular examplewe may assumethat the matrix

in Section 5.3 is known. Since there is only one linear

parameter in each regression equation of our model, we may

rewrite our regression model given in equation (7.2) as

-12xj -I x. -12xj
YIj - e = al(e 1 3_ e ) + elJ

-k x. -k

2xj" _2(e 1 3_e 2xj") + e2j1 - Y2"3 - e = . (7.6)

If l I and 12 were known, then the usual weighted least squares

estimators of _I and e 2 are given by

_** = (DTf_-ID~)-I(DTR-Iy**) (7.7)

Z Z Z

where _** (el,e2) D~
Z 0 Z

~ -k -X 2 -23XI -23k2 T
Z = (O,e i x_l;-e ,...,e -e ) ; _ = c**

..(Oo:OO,o.ooo, c** . 0009 0.001 ; I is a 12 x 12 identity matrix; and

- -k 2 -23X 2 -k 2

y** = (Ylo-l;Yll-e ;..-;YI,23 -e ;-Y20;I-Y21 -e ;...;

-2312) T
I-Y 2, 23 -e
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Using the same technique as weused to derive equation (5.17),
^ ^

we substitute the estimators %1 and %2 into equation (7.7) giving
^ ^

us the estimates of the parameters _I and _2' denoted by _i and _2'

respectively. Applying the above procedure to this example we

^ ^

find _i = 0.12880 and _2 = 0.25528.

In case we do not know the true values of Oli , o22 , and

o12 , we use the same method as we used to derive equation (5.17)

^ ^

to obtain estimates of Oll, o22 , and o12. Substituting %1 and %2

into the regression equations of our model, we first obtain the

single equation least squares estimates of the parameters =l and
^ ^

_2" These are given by _i = 0.10900 and a 2 = 0.27569. Using
^ ^

equation (5.17.1) we find Oli = 0.00064; o22 = 0.00074; and
^

O12 = 0.00058. Substituting these estimates into the matrix

in equation (7.7) we find our new estimates of a I and =2 given

by 0.14735 and 0.27007, respectively.

For comparison, we will obtain the generalized least

squares estimates of the parameters %1' _2' al' and _2" Since

we have already outlined the basic steps of the generalized least

squares procedure in Section 7.2.1, we merely give the results

here. The complete results of the various calculations in this

section are summarized in Table 7.4. Across the top of Table 7.4

are listed the various estimation techniques used to obtain the

values listed in the table and down the first four positions of

the first column of this table are listed the various parameters

of interest. In the last two rows of this table are listed the
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TABLE7.4--Estimates of parameters in equation (7.2)

Parameter Generalized Partial Totals Generalized Least Squares

Known _ Unknown _ Known _ Unknown

_i 0.12880 0.14735 0.09461 0.09504

_2 0.25528 0.27007 0.25409 0.25388

_i 0.01868 0.01868 0.01546 0.01528

%2 0.15609 0.15609 0.15229 0.15261

Figure 7.4 7.6 7.8 7.10

Number

Figure 7.5 7.7 7.9 7.11

Number

various figures where graphs of the original data and the fitted

regression equations of our model appear for a visual comparison.

7.2.3 Generalized Spearman estimation

In this section we apply the generalized Spearman estimation

technique, developed in Chapter 6, to the set of data given in

Table 7.5 generated from an experimental situation similar to that

considered by Box and Draper [1965]. The experimental situation

of interest involves a chemical reaction in which a product 3 is

decomposing to form product 2 which in turn decomposes to form

product i. Schematically we may represent this chemical reaction
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by the following diagram:

TABLE 7.5--Data to be fitted by generalized Spearman and least

squares estimation procedures

j X. Z.
j j Ylj Y2j

i
-5 -- -1.38630 1.00000 0.00000

4

I
-4 -- -0.69315 0.92696 0.01463

2

-3 i 0 0.87213 0.02986

-2 2 0.69315 0.75029 0.04675

-i 4 1.38630 0.60339 0.10608

0 8 2.07945 0.37711 0.16495

i 16 2.77260 0.18042 0.19098

2 32 3.46575 0.05943 0.14191

3 64 4.15890 0.02628 0.09154

4 128 4.85205 0.00000 0.00000

In the above diagram T23 and r12 represent the reaction rates from

product 3 to product 2 and from product 2 to product i,

respectively. We now note that we have brought this problem into

the same framework as the compartmental problem discussed in

Chapter 3. Therefore we have a system of differential equations
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corresponding to those given in equation (3.1) for n = 2. For

this particular example let E(Yi(x)) , i = 1,2,3, represent the

expected proportion of product i present at time x and let the

following boundary conditions be satisfied:

i) E(Y3(x)) = i at x = 0; and 2) E(Y2(x)) = E(YI(X)) = 0 at x = 0.

Corresponding to equation (3.7) we have the following system of

equations:

-kl x
E(YI(X)) = elle

-_2x -k3x
+ _12e + _13e

-kl x -_2x -_3x
E(Y2(x)) = e21e + a22e + e23e

-_i x -_2x -k3x
E(Y3(x)) = a31e + a32e + a33e (7.8)

where _i = T23; _2 = TI2; _3 = 0; all =

--TI2

YI2-T23
; a12 = i - all;

_23

a13 = 1; a21 =- a22 = "r12-T23 ' a23 _32 a33 O; and

e31 = - T23. Since E(YI(X)), E(Y2(x)), and E(Y3(x)) represent

the expected proportions of the various products present at time x,

3

we have the additional restriction that Z E(Yi(x)) = I for all x.
i=l

Hence there are only two independent equations in (7.8), which we

g

take to be the first two. If we let aI = -all, x = e , and
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E(YI(x)) = 1 - E(YI(X)), then the equation for E(Y_(x)) becomes

E(YI(z)) = elexp(-%l ez) + (l-el)exp(-%2eZ) (7.9a)

which is of the same form as equation (6.6a). In addition, if we

let e2 = e2l then the equation for E(Y2(x)) is given by

E(Y2(z)) = e2exp(-llez ) - e2exp(-k2eZ ) (7.9b)

which is of the same form as equation (6.6b).

(k')
By the evaluation of the integrals _i =

OO

f zk'dE (Y_ (z))

(k')
and _2

CO

f zk'dE(Y2(z)) for k" = 1,2, and by using the same
--OO

techniques as presented in Section 6.3, we arrive at the system

of equations corresponding to (6.25b) and (6.33e) given by

KIIA_C) A_ c)- = - KI2

. .(c)
K21n I = _ K22

(C) = in_lln_2; = _ + ii;where A C) = in%l + in%2; A2 KI 1

KI2 =_ + 12 - 2IIKII; K21 = _ ; K22 = _ -

(7.10a)

OD

II -- / (int)e-tdt; and 12 = / (int)2e-tdt.
O o

All that we now need to obtain our estimates of the elementary

. (C)symmetric functions A C) and A2 , are the estimates of
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_i), _2) _i), and _2). These estimates are found from

equation (6.35a), and the values for this particular example
^

and _2) = -2.65392. Using these calculated values to obtain

our estimates of the K's, the system of equations given in (7.10a)

becomes

-216870c)- c)=481403

-0.54531C) =3.28345 (7. lOb)

Solving the set of equations given in (7.10b), we find

L_ C) = -6.02125 and L_ C) = 8.24425. In order to obtain the

estimates of in% I and in% 2 we obtain the two roots of the following

quadratic equation:

2
w + 6.02125 w + 8.24425 = 0 • (7.11)

The roots of (7.11) are given by w I = -3.91595 and w 2 = -2.10530.

Without loss of generality we assume that %1 < %2' and therefore

^ -3.91595

our estimates of %1 and %2 are given by %1 = e = 0.01990

^ -2.10530
and %2 = e = 0.12181, respectively.

The next step in our estimation procedure will be to

estimate the linear parameters, aI and e2' present in our

regression model given by equation (7.2). Since we generated

the observations given in Table 7.5, we know the covarlance

matrix of the random variables elj and e2j. Using the
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observations from Table 7.5 for j = -4 through j = 3, we use a

weighted least squares procedure to estimate the parameters

_i and =2" Wemerely give the results of this estimation here,

since the procedure used to estimate _i and a2 has already been

outlined in Section 7°2.2. In order to obtain a comparison of the

estimation procedures, we also obtain the generalized least

squares estimates of the parameters %1' %2' _i' and _2 for this

example. The complete results of the various calculations in

this section are summarizedin Table 7.6, which is arranged in

the samemanner as Table 7.4.

TABLE7.6--Estimates of parameters in equation (7.8)

Parameter Generalized Spearman Generalized Least Squares

_I 0.05501 0.09231

_2 0.30899 0.27832

%1 0.01990 0.01813

%2 0.12181 0.14239

Figure 7.12

Number

Figure 7.13

Number

7.14

7.15
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7.3 Evaluation of the asymptotic

efficiency for various models

7.3.1 Generalized partial totals

estimation procedure

In Section 5.4 we stated that we would evaluate the

asymptotic efficiency of the generalized partial totals estimators

of the exponential parameters for some particular regression

models. The expression for the asymptotic efficiency of the

exponential parameters has been defined earlier in equation

(5.42). In this section we evaluate this expression for some

particular regression models of interest.

First let us consider the regression model given by

-XlX j

YIJ = _i e + _lj

for J = 0,I,2,...,2M-I. In addition, we assume that the random

variables EIj are independent each with a N(0,o 2) distribution.

With these assumptions we have satisfied the assumptions about

the random variables given at the beginning of Section 5.4,

where some of the asymptotic properties of our generalized

partial totals estimators were discussed. The likelihood function

for our observed random variables YIj is given by

2M-1 1 ( i -XlXj)2 _L = _ exp - - (Ylj-_le
j=o _o 2 2o 2 "

(7.11)
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Weobserve that

aI 2M-I
=---_ E

_i o j=o

x.e-llXj -hlX j
3 (YIj-ale ) '

(7.12)

and we can demonstrate that

=--_ X x.e
\_hl / o j=o 3

(7.13)

Using the results from Section 5.3, we recall that

xj = hj and find the generalized partial totals estimator for
^

hi, denoted by h I, given by

^ 1 ln/Sn/- )hl: 7 \ sn (7.14)

-- i M_I -- I 2M-I

where SII = _ 3=0 Ylj' S12 = _ E• j=M
Ylj' and J = hM is the

constant length of the domain of each partial total mentioned

in the third assumption of Theorem 5.1. Using the results from

Theorem 5.5, we find the asymptotic variance of the generalized

partial totals estimator of h I given by

=iVar(_ 1) M FflFT

-- --T -- I MZI
For this particular example R = _(e,.e,.); e,. = _ . e,j ;

3=o

(7.15)
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D

c,j : (Clj,el,j+M)T; and F : BX I

S**=_**

o 0 ) =(___(l_e -xlJ)
Hence fl = 0 c2 , and since V** \ Xl_

A

t lj)
S12 S**=q**

---_iJ _Xlj T

e (l-e )_
XIJ

we note that F = ( %1 -XI >
-XIj ' -XI J -XIJ "

_l(l-e ) _ie (l-e )

Combining

these results we find

2 2 2XIJ

c _l(l+e )! F_F T _

M Mu_(l-e llJ) 2 "

(7.16)

Next consider the product

D 2 2llJ

(81nL_2 Xl(l+e ) [i 2M-i )2 -2Xlhj

E\_-_'-I / Var(Xl) = (1-e-_-XlJ) 2 -_ j=EO (hi e _ •

(7.17)

The last term in braces is the only one that depends upon M, and

from the assumptions of Theorem 5.1 and the definition of a

definite integral we have



177

J°

M-_oM E (hi e = _M_ E j e
]=o j=o

2J

i f t2 -2klt -4klJ -4klJ 2 2

=--J o e dt - 4j_31 (l-e -4klJe -8J k I

(7.18)

Using the above results and the definition of the efficiency, _,

^

of the estimator kI given in equation (5.42), we have the following

expression for this efficiency:

-%1 J 2

4_iJ(l-e )

v = 2klJ _4kl J -4klJ 2 2 -4_IJ " (7.19)

(l+e )(l-e -4klJe -8klJ e )

It is interesting to note that the expression for _ is independent

of the parameter _i and is a function of klJ only. As %1 J +

it is easily seen that _ _ 0; and as 11 J + 0,!by:a repeat6d

application of L'H0pital's rule, it can be shown that _ + 0.1875.

In Table 7.7 we have given the value of _ for various values of

klJ. By an examination of Table 7.7 we can see, for this

particular model, that the efficiency of our generalized partial

totals estimator of the parameter _i achieves its maximum value

around %1 J = 0.7. In addition, the efficiency does not vary a

great deal for values of %1J between 0.5 and 1.0.
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7.7--Values of asymptotic efficiency of the partial totals

estimator of the exponential parameter

Ii J _ IiJ

0.0001 0.18753 0.70

0.001 0.18769 0.71

0.05 0.19676 0.75

0.i0 0.20573 0.80

0.15 0.21432 0.85

0.20 0.22245 0.90

0.25 0.23004 0.95

0.30 0.23702 1.00

0.35 0.24331 1.20

0.40 0.24886 1.40

0.45 0.25362 1.60

0.50 0.25756 1.80

0.55 0.26063 2.00

0.60 0.26283 3.00

0.65 0.26414 4.00

0.69 0.26456 5.00

0.26457

0.26456

0.26414

0.26287

0.26078

0.25792

0.25433

0.25006

0.22736

0.19857

0.16742

0.13691

0.10908

0.02680

0.00517

0.00090
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The next regression model that we want to consider is

given by the following set of equations:

-XlX j -A2xj
YIj = all e + al2e + elj = E(YIj) + elj

-XIXj -A2xj
Y2j = _21 e + a22e + e2j : E(Y2j) + e2j

(7.20)

for j -- 0,1,2,...,3M-I. We also make the additional assumption

that the vectors (Eli) are independent with each vector having
£2j

a bivariate normal distribution with mean vector zero and

( )covariance matrix E = °ii °12 With these assumptions the

°12 022

likelihood function is given by

3M-I

L= r[

j=o

i I

1 exp{-_[Y,j -E (Y,j) ]Tr.-I [Y,j-E (Y,j) ]}

(2.)Iz12

1
3M-I

exp{ 1 E [Y,j-E (Y,j) ]TE-I [g,j-E (g,j) ] }
j=o

(7.21)

T

where Y,j - E(Y,j) = (YIj-E(YIj)' Y2j-E (Y2j) )
Using equation

_ alnLh _ alnLh T 31"I-1
(5.45) we note that E\-_/ \ _ / = l

j=o

-i T

DiE Dj where
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Dj

8E(YIj) 8E(Y2j) / -ellXje

_E(YIj) _E(Y2j) -12x j

_2 _2 \ -c_12xj e

Setting x. = hj and J = hM, we determine that
3

-)_ixj \

-e21xj e

-_2xj

-_22 x. eJ /

(7.22)

3M-I -I T (All AI2)• Z. DjZ Dj =
J=o \A21 A22

where

- 11 2 - 12 22 2 -
= _ii_21 +° _21;All (o ell +2c

3M-I 2 -211xj
Z x. e

j=o 3

ii 2 _ 12 22 2 , 3M-I/j "_2

ffita" (_ii+20 UllU21 +O 0t21) .E _ j /
3=0

(7.23a)

Ii 12 12 22

AI2 = A21 = (o ellU12+o _ii_22+o u12_21+_ u21_22 )

3M-I 2 -(Al+12)xj
l x.e

j=o J

ffi(oli 12 . 12 22_lle12 +o °ii_22"° u12_21 +° _21e22 )

3=0

(7.23b)
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- ii 2 _ 12 . 22 2 -

A22 = (o _12+2a _12_22_o _22 )

3M-I

j=o

2 -2X2xj
X. e
3

, ii 2 _ 12 22 2

= _o _12 +20 _12_22+0 _22 )

3M-I

Z

j=o

J
-2X 2 (_)

(7.23c)

and

ell 12Z- I _ c= c12 c22 .

Next we want to determine the expression for the asymptotic

A

covariance matrix of the vecto , which is the vector of

2

generalized partial totals estimators of the vector X "

Without loss of generality let us assume that X I < X2" Then the

estimators of Ii and 12 are given by the following expressions:

^ i in = I in ,
Ik = ---him Wk ---J Wk

(7.24)

where

(7.25)

for k = 1,2. That is, w I and w 2 are the roots of the quadratic
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2

w - LI w + L2 = 0

where L I and L2 are the estimators of the elementary symmetric

-_I_ -XI J -%2hM -_2 J
functions of e = e and e = e found by solving

the equations

SI2LI - SIIL2 = S13

$22L I - S21L 2 = $23 ,
(7.26)

-- i qM-i

Siq =- E for i = 1,2 and q = 1,2,3. Fromwhere M j=(q-l)M YiJ

Theorem 5.5 we note that the asymptotic covariance matrix of

is given by

^

_2

! F(IQI)F T
M

where a typical (k,i2+q-l) th term of F is given by

(7.27)

^

a I_

_iq S**=_**

r°ll °12

for i, k = 1,2 and q = 1,2,3; _ =_o12 o22 ); I is a 3 x 3



183

.... _ T

identity matrix; S** = (SII,S12,S13>$21,$22,$23) and T**

(_II,_I2,TI3,T21,T22,_23)
where the T. 's have been defined

lq

earlier in equation (5.23a). It can be shown that

F(EOI)F T = 1(I BII BI2)\ where!

M M \B21 B22 /

^ ^

BII = =ii u\_ll L,=_** ?Vim sL,= _**

^ ^

_I I 2 2

^

_S23 S**=T**/

^ ^

(7.28a)
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BI2 = B21 =

^

o11[c 
" _S'll"

^ ^ ^

+

^ ^

+

^ ^

_i _%2

S**=_**

+

^ ^

" 3S'22 =

+

^ ^

_23 =

+

^ A

+

^ ^

^
A ^

S**=_**

^ ^

+\ a_12 / \ _22 / S**=_**

^ ^

(7.28b)
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and

D B22

^
^

2

+

^ 2

BSI3 S** = **

^
^

BS21 S**=_**

2

+

2

@S23 S** = **

^

8Sll-- B-{21-- S**=_'**

2)' 2 "_

@_12 _ S**=V**

^ ^

aX2

BSI3 S**=_Z**

(7.28c)

-XIJ

At the point _** we can show that w I = e and w 2

Therefore, from (7.24) it can be seen that

-X2J
= e

= _ _lk J BSiq S**=_**
BSiq S**=_** Je

(7.29)

for k = 1,2. In addition we can show that
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+
-_i J -_2 J

_Siq S**--V**"

(7.30)

for k = 1,2. We now see that we will need the expressions for

in order to determine the elements of the matrix

_F(Z_I)F T, and we have listed these expressions in Table 7.8.

It can easily be seen that each element of the matrix

IF i(7QI)F T has a common factor _--r--. We factor this term out
jz M

of this matrix and multiply each element of the matrix

3M-I 7_IDTZ D. . by it. This means that the only elements of our

j=o J J

expression for the efficiency involving M are terms of the form

3M-I 2 -lx
x. e j ____i

j=o J j2M"

Using our previous results and the definition

of a definite integral, we can show the following:
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TABLE7.8--Expressions for quantities appearing in equation
(7.30)

_LI I_ -_iJ-%2J 8L2 -_iJ-12J_ :-e CIIIE 1 _ I_ :-e C21/E I

_Sll S**=_** 8SII S**=_**

-%1 J -%2 J _L 2 -%1 J -%2 J
_LI_ I_ =(e +e )CII/E I _ I_ =(e +e )C21/E I

_S12 S**=_** _S12 S**=_**

8L 2
@LI I_ = -CII/E I _ I_ = -C21/E I

BSI3 S**=_** 8S13 S**=_**

BLI I_ -_iJ-_2J BL2 -_iJ-_2J_ = e CI2/E I _ I_ = e C221E I

BS21 S**=_** 8S21 S**=_**

BL---_II =- (e- llJ+e- 12J) C12/E I BL---J--21 =- (e-llJ+e- %2J) C22/E I

_$22 S**=_** _$22 S**=_**

8L_

_LI--I-- = CI2/E I _- I_ = C22/E I

8S23 S**=_** 8S23 S**=_**

-_i J -%2 J

CII = _21J%2(l-e ) + _22J%l(l-e )

-_i J -%2 J

C12 = _llJ_2(l-e ) + _12J%l(l-e )

-_I J -_i J -_2 J -_2 J

C21 = _21J%2e (l-e ) + _22J%le (l-e )

-llJ -_i J -%2 J -%2 J

C22 = _llJ12 e (l-e ) + _12J%le (l-e )

-llJ - -llJ -_2 J
E1 = (l-e )(l-e %2J)(e -e )(_12=21-_ii_22 )
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3M-I -lx. 3M-I
lim E x2 e 3 1 = i__ lim Z

M_ j=o j j2 M j3 M+_ j=o
j -It
jj e M- j3 o

dt

-3_J -31J 2 2 -31J_ /= 2-2e -61Je -9_ J e j _3j3. (7.31)

After the determination of the form of each of the

elements in the expression for the asymptotic efficiency, v, of

A (_i , we let I = 0.001

712 "O. 0009

0.0009_ = i = I
0.001 _ ' el2 - all' e22 - _21'

and evaluated the asymptotic efficiency for the following ranges

of the parameters: 0.i0 ! ell _ 0.80, 0.25 ! s2 ! 0.90,

0.004 _ Jk I _ 1.9, and 1.0 ! J12 _ 4.0. For the particular

models considered, we found that in every instance 9 < 0.002.

However, it was possible to note during these calculations that

did achieve its smallest values when [Jl I - Jl2[, or

equivalently II1 - 121, was relatively small.

7.3.2 Generalized Spearman estimation

procedure

In this section we evaluate the asymptotic efficiency

of the generalized Spearman estimators of the exponential

parameters for some particular regression models. The expression

for the asymptotic efficiency of the estimators of the

exponential parameters is given in Section 6.4 and defined in
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equation (6.50).

The first model that we consider is the case whenn = i

and the randomvariable YIj represents the proportion of

"successes" in n* independent binomiai trials. Therefore we may

rlj and we assumethat
write YIj = n*

Z°

E(Ylj) = exp(_lle 3) (7.32)

where the values of z. have been specified in Section 6.2 for
3

j = -M', -M'+ I,...,0,1,...,M''. This is the same model and

experimental situation as considered by Johnson and Brown [1961],

and also this model is among the general class of models given

in equation (6.5c) with n = i and all = I. Using the same

assumptions as stated in Section 6.4, we may write the

likelihood function as

I

M'' /In* _ rl"

L = j=_M-_£1jl PlJ J (l-Plj)n"-rlj

(7.33)

= E (YIj)where Plj . It can then be shown that

(r.. -n*p I. )2

(ZSlnL _ 2 M'+ , (1))2 ÷3 ±3
-- = _ tPlj 2

K'SXI / j=-M" Plj (I-Plj)2

+

_

, (I),
, (i))_Plj"jE _Plj

J ,j "=-M"

j#j "

(rlj-n*Plj) (rlj --n*Plj .)

Plj (I-Plj)Plj "(I-Plj ")
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where Plj = /_i"
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Hence we now have the following expression

E _inL_2 M'' , (1).2 n*
-- = E _Plj ) " (7.34)

\_i / j=-M" Plj (I-Plj)

From the results of Section 6.2, we note that the

estimator of Ii is given by

ll=e e
(7.35)

where

^ M''-I
(i) zj+zJ +I _ (7.36)

_i = E
J=-M" 2 / Aylj

and Ylj represents the observed value of YIj at the point zj and

&YlJ = Yl,j+I - Ylj" From Theorem 6.7 we note that the

^

asymptotic variance of Ii is given by

M''-2 .P'.lj(I-PlJ) }F" d2 Z r _ F'T

j=-M'+I .n* "

(7.37)

where
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^

^

Hence the asymptotic variance of hI is given by

2 d2
Ii M" "-2

n_ Z
j---M'+I vlj (I-plj)"

(7.38)

(7.39)

Combining the results from equations (7.34) and (7.39), the

A

reciprocal of the asymptotic efficiency of _i is given by

1 lira /n* M'"

J=-M"
.2 ,iplj,)

Plj (I-Plj)_ J'-r_"+lPl:l

z (l-Plj))
ffi _i M -r-> Jffi-M" plj(l-Plj) Jffi-M'+l plj

2 dz (z) ] dz

= _i_ pl(Z)(l_Pl(Z)) -m i [l-Pl(Z)

(7.40a)

where p_l) (z) ffi -- and pl(z) ffiE(YI(Z)) = exp (-Alez). If we

make the substitution t = exp (-llez) in the last two integrals of

equation (7.40a) then

1 1

1 Znt (t-l) dt :--
V - (l-t) dt in t 6

0 0

Or

(7.40b)
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6
= = 0. 87705.

_21n2
(7.40c)

It is interesting to note the high asymptotic efficiency for this

model, which verifies the result quoted by Johnson and Brown [1961],

and also to note that v is independent of n .

As an extension of the results just presented, next we will

consider the case where YIj = rlj/n ' Y2j = r2j/n ' and rlj and r2j

are random variables having a multinomial distribution. For this

particular case we assume that

E(YIj ) = all exp (-ll ezj) + (i-_ii) exp (-%2 ezj) = Plj

and

Z °

E(Y2j ) = l-e21 exp (-lie 3)

Z°

- (i-_21) exp (-12e J) = P2j'

(7.41)

for j = - M ", -M'+I,...,0,1,.--,M "', which is the example given by

equation (6.5c) with n = 2. Using the assumptions of Section 6.4,

the likelihood function for this example is given by

L

n [
H ,

! '(n )'
j=-M _ rlj.r2j. -rlj-r2j •

r . r . n -rlj-r2j
1j 2j ) ..

Plj P2j (I-Plj-P2j

(7.42)
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After extensive algebra we find

81nL
= E

B_k J=-M"

(k) * (r2j-n*P2 j)
PlJ [ (l-p2j)(rlj-n plj)'+plj ]

Plj (I-PlJ-P2J)

and

P2j [ (i-plj) (r2j-n P2J)+P2J PI'_)

P2j (I-Plj-P2j)
(7.43)

(l-P2j)(rlj -n Plj)+Plj(r2j -n P2j ) ]

PlJ (I-PIj-P2j)

: _(I) , P2j)+P2i Plj ]}+ P2j [ (I-plJ) (r2'_-n (rl'_-n )

P2j (I-Plj-P2J)

_ (2) . -n Plj (r2_-n ,]PlJ [ (I-P2J) (rlj )_lj ,. P2j )

PlJ (I-Plj-P2J)

(2) [ (I-plj)(r2j-n*P2j)+P2j (rlj-n Pli!,] _+ P2j

P2J (I-PlJ-P2J) J3
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+
J ,j "=-M Iplj

j_j

) (rl_-n Plj)+PI_j(r2.j -n P2J ) ]

Plj (I-PlJ-P2J)

(i)[ )(r-n p )+p (r-n plj)] _+ P2J (,I-PI_ 2_ 2j 2j , ,lJ .....

P2j (I-Plj-P2J)

Plj "(I-PlJ "-P2J "1

,-n P2J ") ]

+ p__ ..

P2j "(I-Plj "-P2J ') J

(7,44)

where Pij-(k)= 8Pij/_%k" From the assumptions that we have made about

the random variables rij , we know that Var (rij)=n Pij(l-Pij) and

Coy (rlj,r2j)=-n PljP2j. Hence we may conclude that

2 . M'"
= n Y.

j=-M"

(pl_k))2(l-P2j)

1

{ (l-Plj-P2j) 'I

. (k). 2

+ _'P2_ ) (1-PI_)

P2j

(7.45)

for k=l,2, and
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(i) (2)(l_p2_)
P!J Plj

Plj

n

(i) (2) (I-PI-I) (i) (2)+ (2) (i)'_

+ P2J P2j + Plj P2j Plj P2j j " (7.46)
P2J

Next we w_t to determine the expressions for the asymptotic

covariance matrix of the generalized Spearman estimators of the

vector X2 . Let p_j = l-P2j; then both Pl] and p_] fall _der the

classification of Case i of Chapter 6. Without loss of generality

let us assu_ that 11 > 12 . Then the estimators of 11 _d 12 are

given by the following expressions:

where

^ wk
Ik = e , (7.47)

w k = _ L1 + (-i) k-I _ 4L_ C) , (7.48)

for k = 1,2.

That is w I and w 2 are the two roots of the equation

2 LlW + L2 = 0 ,w - (7.49)

_ (C) and L_ C)where L1 are the estimators of the elementary symmetric

functions of in111and .in_ 2 found by solving the equations

i L 2 = - KI2

K21 L C)_ T (C)"2 = - K22
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^ ^ ^ _l) (2).(2)+ I2 _ 2IIK21 The expressions for _ and _iand K22 = _2

are given in Theorem 6.1 where pl(z) = E(YI(Z) = _llexp (-11eZ)

+ (1-ell) exp (-12eZ), and the quantities _(i) and _(2) are

defined in the same theorem using p_(z) = l-P2(Z) = I-E(Y2(z))

= _21 exp(&11eZ) + (I-_21) exp (-12eZ) in the place of p2(z). The

_i) _2) (i) and (2)estimators of _ , _ , _ , _ are defined in equation

(6.35a), where we use the observations y_j = i - Y2j in the place of

Y2j in _(i) and _(2). From Theorem 6.7 we note that the
A

asymptotic covariance matrix of is given by

F-nF -T (7.51)

where F" has been defined in connection with equation (6.48) and

,Plj (I-Plj)
/

d2 M''-2 12zJPlJ (I-PlJ

n j=-M +_PljP2j

\2zjPljP2 j

2zj Plj (I-Plj)

2

) 4zjPlj (I-Plj)

2zjPljP2j

2

4ZjPljP2j

PljP2j 2zjPlJP2j \_

2zjPljP2 j 4zjPljP2j

I

P2j (I-P2j) 2zjP2j (1-P2j) !

2 (1 p23) /
2zjP2j(I-P2j) 4zjP2j _ . /

(7.53)
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It can be seen that the factor
1

n

matrix cancels with the factor n

in the asymptotic covariance

/ _inL_/31nL _r

in the matrix E )
A

Hence our expression for the asymptotic efficiency, v of ¢_i)
' \X 2

will be independent of n . We now factor out a d from the

asymptotic covariance matrix and multiply this d times the matrix

¢31nL_¢_inL ) TE_3X /_3X After doing this we find the reciprocal of the

asymptotic efficiency to be given by

I= lim dE 31nL 31nL Til i F.T i

BBII

BB21

F"

BB31

BB-"

41

BBI2 BBI3 BBI4 \

\

BB22 BB23 BB24 \

BB32 BB33 BB34 /

/
BB42 BB43 BB44

rm

F -L

, (7.54)

where the expressions for the AA's and BB's are given by the

following:

OO

AAII = S{i/(l-pl(z)-p2(z))}{(pl (1)(z)) 2 [(l-p2(z)/pl(z)]
--OO
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OO

AAI2=AA21 .-- y{1/(1-Pl (z)-p2 (z)) } { (pl (1) (z)p_ 2) (z))[ (l-P2 (z))/pl (z) ]
--00

II

I

+(p_l) (z)p_2) (z)) [(l-p l(z))/p2(z) ] } dz ;

(I
AA22:_AAI! with pl -) (z) replaced by p(2)(z)

t9
_:) (z)"

P2 '

rBI3":BB31 _ f Pl(Z)P2(z)dz;
--OO

pl(z) (l--Pl(Z)) dz;

CO

BBI]= f
--OO

CO

BB33 = f P2(z)(l-P2(Z)) dz;
CO

OO

BB14 = BB/:I= BB23 = BB32--- 2 f

BDI2-- BB2:_.--2 f zpl(z)(!-pl(Z))dz;
--CO

CO

BB31_ BB43-- 2 f ::p2(z)(l-P2(Z)) dz;
--OO

BB24 = BB42 = 4 f

CO

B322 = 4 r

zP! (z)P2 (z)dz ;

_2pl(z)p2 (z) dz;

72pi (z) (l-Pl,'Z)) dz;

and p_l)(z) replaced by

and

BB44 = 4 f
--00

z2p2 (z) (l-P2 (z)) dz o

We have been able to demonstrate

integrals given by _-All' _12' and AA22,

the existence of the

but we have been unable to
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evaluate these integrals in a closed form. Therefore we have

resorted to numerical methods for the evaluation of these integrals.

A detailed discussion of the quadrature method that we used for the

eValuation of these integrals is given in theboOkbyRalstonand

Will ([1960], page 242-248).

In Table 7.9_ we tabulate the values of the asymptotic

efficiency of< ii_ for various values of the parameters of the
"2

model (7.41). In addition to the values given in Table 7.9,

we also attempted to calculate the value of v for all = 0.70;

_21 = 0.35; _i = 0.85; and _2 = 0.04. Because of some problems with

the numerical integration of the integrals for AAII , AAI2 , and AA22 ,

we are not certain of the number of significant figures for the

value of v, which came out to be approximately 0.90. From a

visual examination of this taLle it can be seen that v becomes very

small as (_i-_2) becomes small. This result is not inconsistent

with what we would expect, since for those cases when (_i-_2) is

small our model could just as well be reduced to two single

exponential equations. As (ll-A2) increases, we note that v does

take on some moderate values. In addition, this table also shows,

for the model being considered, that a similar relation exists

between v and (ell-a21),

Although we have not considered in this research the specific

problem of constructing confidence ellipsoids, this could be another

problem for consideration in future research. This general problem

is related to the problem of measuring the nonlinearity of a
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TABLE7.9--Asymptotic efficiencies of the generalized Spearman
estimates of the exponential parameters in (7.41)

%1 %2 ell e21 v

0.75 0.55 0.80 0.i0 0.00016

0.95 0.65 0.80 0.i0 0.00034

0.85 0.55 0.80 0.i0 0.00058

0.95 0.55 0.80 0.i0 0.00141

0.95 0.095 0.55 0.45 0.11725

0.90 0.080 0.55 0.45 0.15063

0.90 0.070 0.55 0.45 0.18792

0.875 0.065 0.55 0.45 0.20988

0.80 0.060 0.55 0.45 0.23140

0.85 0.060 0.55 0.45 0.23740

0.95 0.095 0.70 0.35 0.24239

0.90 0.080 0.70 0.35 0.31326

0.90 0.070 0.70 0.35 0.39507

0.875 0.065 0.70 0.35 0.44136

0.80 0.060 0.70 0.35 0.48052

0.85 0.060 0.70 0.35 0.49879
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nonlinear model, which was considered by Beale [1960] and Guttman

and Meeter [1965] and mentioned in Chapter 2 of this research. We

could test, by using the measure of nonlinearity given in

equation (2.17), to see if our models may reasonably be

approximated by a linear model. If the measure of nonlinearity

is small, then according to Beale, linear regression theory results

maybe used to construct approximate confidence regions.

7.4 Some remarks

Although it must be rememberedthat the conclusions we

arrive at in this chapter are directly related to the particular

models considered, it might be useful to someonedesiring to apply

one of the generalized estimation procedures developed in this

research to briefly summarizesomeof the results of these examples.

i) From a visual examination of the fitted equations in Figures 7.3

through 7.15, there does not appear to be a great deal of difference

between the equations fitted by the generalized partial totals

procedure and the generalized least squares procedure, or the

generalized Spearmanestimation procedure and generalized least

squares. All of the procedures appear to give reasonably good fits.

2) For the particular model considered in this chapter, the values

of the asymptotic efficiency of the generalized partial totals

estimators of the exponential parameters were very small. Even in

the single exponential model the asymptotic efficiency was always

less than 0.27. So this particular criterion does not indicate that
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this estimation procedure has a great deal to offer when samples are

taken for a large numberof points. However, if the assumptions

concerning the randomvariables and the spacing of the observations

of our model are satisfied, then this generalized partial totals

technique is easy to apply, comparedto the generalized least

squares or iterative maximumlikelihood procedure. In any case, we

can use these partial totals estimates as initial estimates for the

generalized least squares procedure.

3) For the particular model considered, the values of the

asymptotic efficiency of the generalized Spearmanestimators of the

exponential parameters did achieve somemoderately high values. In

addition, this technique has the advantage of being a simple

technique like the partial totals procedure. Although it maybe

difficult to satisfy the assumptions concerning the spacing of the

observations and the randomvariables of a model under consideration,

we have already indicated in previous chapters how these assumptions

may be satisfied in particular experimental situations, e.g. in

numerousbiological serial dilution experiments the observations are

taken at exponentially spaced values of the independent variable.

Just as we mentioned in connection with the generalized partial

totals estimators, we may always use the Spearmanestimators as

initial estimators for the generalized least squares procedure.

However, because of its simplicity and relatively high asymptotic

efficiency for a model like (7.41), this method would be preferred
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to generalized least squares estimation for a model like (7.41_ if

it is reasonable to assumethat the coefficients as well as the

exponential parameters differ widely.



VIII. SUM_RYANDCONCLUSIONS

In this research we have generalized three nonlinear

estimation procedures so that we can apply them simultaneously

to a multiple equation regression model, These three generalized

procedures have been designated by the following names:

(I) generalized least squares estimation procedure;

(2) generalized partial totals estimation procedure; and

(3) generalized Spearmanestimation procedure. Wehave shown

how the generalized least squares procedure may be applied to the

estimation of the parameters in the regression model given by

(1.2). Also we have shownhow the other two generalized

procedures maybe applied to the estimation of the parameters for

someof the membersof the class of regression models specified

by (i.i) which arise in the analysis of compartmental models.

In order to give somemotivation to the consideration of the

class of regression models given by (i.I), we have devoted the

third chapter to a discussion of tracer experiments and various

compartmental models.

In addition to the development and generalization of

these estimation procedures, we have also considered someof the

asymptotic properties of our estimators. Wehave demonstrated

204
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the consistency of our estimators, and for the generalized partial

totals and Spearmanestimation procedures we have derived the

limiting distribution of the estimators of the nonlinear

parameters. Wehave also defined a measure of efficiency of the

estimators of the nonlinear parameters for the generalized partial

totals and generalized Spearmanestimation procedures.

In the seventh chapter, we have applied the three

generalized estimation procedures to somesets of data from

particular regression models. For those sets of data from which we

calculated our generalized partial totals and generalized

Spearmanestimates, we also calculated the generalized least

squares estimates of the parameters of our model. Wehave also

displayed somegraphs of the original data with the fitted

regression equations, which mayserve as a visual comparison of

the various techniques for the particular models considered.

In this chapter we have also evaluated, for someparticular

regression models, the expressions for the asymptotic efficiency

of the estimators of the exponential parameters found by the

generalized partial totals and generalized Spearmanestimation

procedures. This allows for another comparison of the various

estimation techniques.

Although the limited empirical comparisons contained in

the seventh chapter of this research do not allow a basis to

judge the various generalized estimation procedures in general,

there are somepoints that have been evident throughout this
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research. The generalized least squares procedure is applicable

to a larger class of regression models than the two other

generalized procedures, but the difficulty of applying this

procedure and the problems of convergence may be more important

than the advantage of wide applicability. The generalized partial

totals procedure has been extended to the estimation of the

parameters in a particular subclass of regression models given by

(i.I) when the observations are equally spaced, and the estimates

found by this procedure are muchmore easily obtained than the

least squares estimates. The generalized Spearmanestimation

procedure also has the desirable characteristic of being easily

applied to the estimation of the parameters in a particular

subclass of the regression models given by (i.i), when the

observations are equolly spaced on a logarithmic scale, and,

in addition, has the advantage that the asymptotic efficiency of

the estimators of the exponential parameters achieves moderately

high values. Therefore if a model, to which the generalized

partial totals or generalized Spearmanestimation procedures may

be applied, is appropriate, then these procedures provide

attractive alternatives to the complicated generalized least

squares procedure.
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